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Abstract—A memory-efficient Viterbi decoder (VD) named 

modified state exchange (MSE) is proposed using pre-trace 

back technique to obtain the decoded data by blocks. Since the 

architecture of MSE can record the “survival state number,” 

which can also be the resulted decoded data, no decision bit is 

required during trace back and decoding. Therefore, the 

power and chip area of the survivor memory unit in the MSE 

method are smaller than those of the existing trace back 

approaches. The VD using MSE approach for (2, 1, 6) 

convolutional code was designed using TSMC 0.18�m 1P6M 

CMOS technology. The core area is 0.69mm2 with power 

consumption of 58mW at 100MHz. 

I. INTRODUCTION 

In wireless communications, transmission rate and data 

correction are always the top priorities to consider. However, 

there are various styles of disturbance and noises that will 

make the received signals difficult to be recovered to the 

correct transmitted data, so many algorithms have been 

proposed to alleviate these problems, for example, error 

correction codes. In the IEEE 802.11a/g/n, the convolutional 

encoder is used in the transmitter, and the Viterbi decoder 

(VD) [1] is employed in the receiver to enhance 

transmission quality. 

Fig. 1 shows the four functional blocks of VD, including 

branch metric unit (BMU), add-compare-select unit (ACSU), 

feed-back unit (FBU) and survivor memory unit (SMU). 

The BMU calculates branch metric of each branch 

according to maximum likelihood of the received data. The 

ACSU makes the sum of branch and path metrics, then 

compares and selects the survivor path metric and the 

decision bit. The FBU stores the survivor path metric for 

ACSU to be used in the next cycle. The SMU produces the 

decoded data based on the decision bit and the survivor path 

metric. 

The SMU marked by boldfaced letters in Fig. 1 

significantly influences latency, power and chip area in a 

VD. It is usually categorized into register exchange (RE) [2], 

[3] and trace back (TB) [4] approaches. The hardware 

complexity of RE compared to that of TB may be lower, but 

the power consumption is usually much higher. On the 

contrary, power consumption of TB is lower. However, 

larger memory and register requirement as well as higher 

latency are its drawbacks. An improved TB with pointer 

registers named pre-trace back was proposed to reduce the 

memory and latency [5], but it requires additional pointer 

registers and still needs decision bits to decode data. In 

general, the RE technique is only good for trellises with 

small state numbers, whereas the TB approach is more 

appropriate for the trellis with large state numbers. 

The proposed architecture, which was first reported in 

the dissertation [6], improves the SMU by tracing the state 

number which can also be the decoded data. Thus, no 

decision bits are required during trace back. That makes 

“block” trace back possible and dramatically reduces the 

clock cycles during tracing back. In the meanwhile the 

latency becomes shorter, and the usage of memory/registers 

is less. The similar concept named state exchange (SE) was 

also proposed later [7] without minimum path metric unit 

(MPMU). To differentiate the architectures, the proposed 

one is named modified state exchange (MSE). 
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Figure 1 Functional blocks of VD 

II. CONVENTIONAL DESIGN OF SMU 

To facilitate the presentation of SMU architectures, the 

convolutional code of (n, k, m) = (2, 1, 6) in the IEEE 

802.11a/g/n is employed in this paper. That means there are 

2 outputs, 1 input and 6 shift registers in the encoder with 

the generator polynomials of G1 = 1011011 and G2 = 

1111001. According to literatures [8], the correct data bits 

can be extracted if the decoded data sequence is 

accumulated to the decoding length T, which is 

approximately 4m to 6m. Our simulation with adding 

additive white Gaussian Noise (AWGN) indicates T = 6m 

with 32-level soft decision inputs for 16 symbols Quadrature 

Amplitude Modulation (16QAM) is very close to the 

theoretical limits. 

The decoding length T also determines the amount of 

memory/registers in the SMU. Since the total number of 

states is N = 2m = 64, the minimum memory would be T�N 

bits. The following briefly describes the operations of 

conventional TB approaches. 

The conventional TB method stores the decision bits in 

the SMU directly. The survivor path of trellis is determined 

by these decision bits which correlate to the states. Fig. 2 

illustrates the operation of SMU in the 3-pointer even TB 

VD [4]. The 3 pointers, 2 TB’s (trace back) and 1 DC 

(decoding), work at the same period in the T/2 clock cycles. 
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Because there are N = 64 states with T = 36, each bank has 

the memory size of 18 bits � 64 (T/2�N). When each writing 

operation (WR) starts, the previous bank releases a tracing 

pointer for TB. Since it traces back one bit per clock cycle 

and keeps WR continuously, the latency is much longer than 

the RE approach. After the TB path length reaches the 

decoding length T, one more bank is used to trace the states 

and generate the decoded data labeled as DC. 

Fig. 3 shows the SMU architecture in the 3-pointer even 

TB VD. It requires six 18�64 memory banks and three TB 

units and obtains the decoded data bit by bit. 
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Figure 2 SMU operation of 3-pointer even TB VD 
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Figure 3 SMU architecture in 3-pointer even TB VD 
 

The pre-trace back approach [5] employs pointer 

registers to store the states, so the TB process is completed 

very fast and DC of Bank 0 is performed at time 3T/2 to 2T 

in Fig. 2. The memory banks are reduced to 4 and the 

latency is 2T. However, it requires additional 2 sets of 

pointer registers and additional power consumption. Note 

that if the length of memory bank is increased to 2T as the 

example in Ref. [5], the memory banks may be reduced to 3 

and only 1 set of pointer register is required. However, 

memory requirement is larger and latency is longer. 
 

III. THE PROPOSED SMU - STATE EXCHANGE 

The proposed SMU like pre-trace back stores the states 

in the registers as the pointers. The difference is the binary 

state assignment could be mapped to the decoded data 

without decision bits and extra circuits. 

To explain the operation, if the 64 states are denoted as 

s0, s1, … , s63, and the trellis starts from s0 with the 

sequential data (1 0 0 1 1 1, 1 0 1 1 0 0, 1 0 0 1 1 0 …), the 

survivor path will be s0 => s32 => s16 => s8 => s36 => s50 

=> s57 => s60 => s30 => s47 => s55 => s27 => s13 => s38 

=> s19 => s9 => s36 => s50 => s25. Fig. 4(a) shows state 

exchange process of the first bank. The state number 0 is 

transferred to address 57 corresponding to s57 after 6 

clocks. The state number 57 will be stored at address 60 

(s60) of the second bank in the 7
th clock as shown in Fig. 

4(b). After another five clocks, “57” is transferred to 

address 13. Fig. 4(c) shows the similar operation after 6 

more clocks in the third bank. Thus, 13 is stored in 

address 25. Note that we only take one survivor path as an 

example for illustration. 

 

Figure 4(a) State exchange of the first bank 

 

Figure 4(b) State exchange of the second bank 

  

Figure 4(c) State exchange of the third bank 

If the tracing back and decoding process are started now, 

the smallest path metric is determined first, and assumed to 

be state 25, the state number stored in address 25 of bank 3 

is identified as 13.  Next, the state number in address 13 of 

bank 2 is 57. The tracing back process is similar to the pre-

trace back, the pointers make trace back fast. Due to the 

specific binary state assignment, it can be observed that the 

boldfaced state numbers 57, 13, and 25 are expressed in 

binary formats, the decoded data can be obtained by 

reversing the binary order: 

57 => 1 1 1 0 0 1   bit reversed => 1 0 0 1 1 1  

13 => 0 0 1 1 0 1   bit reversed => 1 0 1 1 0 0  

25 => 0 1 1 0 0 1   bit reversed => 1 0 0 1 1 0  

In order to maintain the decoding performance like the 

conventional Viterbi algorithm, the MSE method also needs 

to accumulate the survivor path longer than the decoding 

length T before trace back. Since m = 6, the size of each 

memory bank is m�2m = 6�64. Due to the decoding length 

T = 36, 8 memory banks were employed to store the state 

numbers. A set of 6 � 64 registers was used for state 

exchange. It is similar to the role of pointer registers in pre-

trace back approach [5]. The operations of these 8 memory 

banks along the time are illustrated in Fig. 5. 
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The first trace back begins after the survivor path is 

accumulated for 7 banks. In Fig. 5, five TB’s represent six 

pointer trace back activities, which means the decoding 

length is T/6�6 = T. Due to m = 6, six clocks are considered 

as a group. The first two clocks are used to find the 

minimum path metric of the 64 states. The other four do 

pointer TB like to find the state number in the 4 memory 

banks. In the mean time, state exchange is performed using 

registers. At the end of the six clocks, the states stored in the 

registers are transferred to Bank 8. In other words, Bank 8 is 

idle during these six clocks. The TB operations are 

continued for another three clock cycles and the extracted 

state numbers are 12 decoded bits, which are labeled as DC 

in Fig. 5. These operations are repeated for every 12 clocks 

until all the data sequences are completely decoded. 

  

 
Figure 5 SMU Operation of proposed MSE VD 

Fig. 6 shows the SMU architecture in the proposed 

MSE VD. The register is used to store state numbers for 

state exchange. The eight memory banks keep the state 

numbers which are acted as pointers. Before trace back, the 

minimum path metric is determined first through MPMU. 

Then, trace back can be done easily by using pointers. The 

contents of pointers are also the decoded data during 

“block” decoding. Thus, no decision bits are required. In 

contrast to the complicated SMU architecture in Fig. 3, the 

proposed SMU only needs 6� 64 registers and 6� 64� 8 

memory as well as a simple block decoding process. It is 

worth noting that the SE method [7] did trace back without 

MPMU, but that would require longer decoding length 

before trace back. Another advantage of proposed MSE is 

using SRAM instead of registers to store states for those 

memory blocks not performing state exchange. That further 

reduces the power and area. 

In summary, the proposed “modified state exchange” 

(MSE) is to make the state number equal to the decoded 

data bits. With the state number stored in the memory, the 

fast trace back process like pre-trace back can be achieved 

by directly extracting the state number which also 

represents the decoded data. Therefore, no extra circuits are 

required for decoding, unlike the conventional TB or pre-

trace back method requiring decision bits for decoding data. 
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Figure 6 SMU architecture in the proposed MSE VD 

IV. PERFORMANCE EVALUATION 

To verify the error correcting capability of the proposed 

MSE algorithm is comparable to the theoretical 

conventional Viterbi algorithm (VA), bit error rate (BER) 

simulations with AWGN were performed. Fig. 7 shows all 

the curves are very close for BPSK, including floating point, 

fixed point with 32 levels simulations, and FPGA emulation. 

 
Figure 7 Comparison of BER to the conventional VA  

The memory capacity and the latency of various SMU’s 

for (2, 1, 6) VD’s with the same decoding length of T = 36 

are compared in TABLE I [5], [9]. The area of memory unit 

using SRAM-type circuits is much smaller than that of 

exchange unit using registers. Note that the 3-pointer even 

and odd types as well as pre-trace back are TB architectures. 

These trace back methods need additional trace back unit 

(TBU) or extra pointer registers, and decision bits for 

decoding, so the power, area and latency are higher or larger 

than those of the proposed approach. Some different MRE’s 

[9] were tried to reduce latency of the TB approach. 

However, the larger exchange unit consumes more power. 

We designed two versions of SMU architectures for 

100MHz operation using standard cells in 0.18�m CMOS 

technology, including 3-pointer even TB, and the proposed 

MSE. Table II compares the area of memory including 
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registers, TBU and SMU. For the area of SMU, MSE is 

about 23% smaller than TB, which is a significant 

improvement. Power consumptions of SMU’s after place 

and route are compared in Table III. The power of SMU for 

MSE is 25% less than that for TB. 

TABLE I Comparison of memory capacity and latency 

 

TABLE II Comparison of SMU area 

Core area 

(�m2) 
Trace back MSE reduction 

Memory 214k 173k -19.16% 

TBU 24k 1k -58.33% 

SMU total 238k 183k -23.11% 

 
TABLE III Comparison of SMU power 

Power(mW) 

@100MHz 
Trace back MSE reduction 

Memory 13.6 11.38 -16.32% 

TBU 1.98 0.7 -64.65% 

SMU total 15.58 12.08 -22.46% 

 

Several VD’s for IEEE 802.11a/g using trace back 

technique have been implemented in recent years [10]-[12]. 

The comparison to our proposed MSE method is given in 

TABLE IV. One of them adopts hard decision. The other 

use soft decision with 3 to 5 bits. However, our simulation 

indicates 5 bits to achieve the closest performance to 

theoretical Viterbi algorithm. The normalized area is 

normalized with respect to CMOS 0.18�m technology. The 

overall performance, like area, power and latency, the 

proposed MSE architecture is superior to the others. 

TABLE IV COMPARISON OF VITERBI DECODER CHIPS 

Design technology states type 
Power 

(mW) 

Core 

area 

( 2mm )

Normalized 

area 

[10] 
CMOS 

0.25 �m 
64 

soft 

3-bit

90 

(100MHz) 
2.16 1.12 

[11] 
CMOS 

0.18 �m 
64 hard 

39 

(100MHz) 
2 2 

[12] 
CMOS 

0.18 �m 
64 

soft 

4-bit

68 

(72MHz) 
3.06 3.06 

Proposed 

MSE 

CMOS 

0.18 �m 
64 

Soft 

5-bit

58 

(100MHz) 
0.69 0.69 

 

V. CONCLUSIONS 

The proposed “modified state exchange” algorithm 

simplifies the trace back processes with “block decoding” 

capability to achieve low power, low latency and low 

memory requirement. The latency of MSE is reduced from 

3T of the conventional TB to 3T/2. The power and chip 

area are significantly smaller than those of TB, 

simultaneously. The VD using MSE architecture for the (2, 

1, 6) convolutional code was designed using TSMC 

0.18�m 1P6M CMOS technology. The core area is 

0.69mm2 with power consumption of 58mW at 100MHz. 
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