Microelectronic Circuits (III)

Operational-Amplifier Circuits

Heng-Ming Hsu

National Chung-Hsing University
Department of Electrical Engineering
Outline

- The Two-Stage CMOS Op Amp
- The Cascode CMOS Op Amp
- 741 Op Amp Circuit
● OPAMPs are studied in this chapter.

● OPAMP design
 – bipolar OPAMPs can achieve better performance than CMOS OPAMPs.
 – CMOS OPAMPs are adequate for VLSI implementation.
 – BiCMOS OPAMPs combine the advantages of bipolar and CMOS devices.
Two-Stage CMOS Op Amps

Bias generation 1st stage 2nd stage

I_{REF}

Q_8 Q_5 Q_7

$+V_{DD}$

I

Q_1 Q_2 C_C

Q_3 Q_4 Q_6

$-V_{SS}$

ν_0
• Voltage gain (discussed in Sec. 7.7.1)
 - Voltage gain of 1st stage: \(A_1 = -g_{m1}(r_{o2} \parallel r_{o4}) \)
 - Voltage gain of 2nd stage: \(A_2 = -g_{m6}(r_{o6} \parallel r_{o7}) \)
 - DC open-loop gain: \(A_v = A_1 \times A_2 \)

• Input offset voltage
 - \textit{Random offset}: device mismatches as random in nature
 - \textit{Systematic offset}: due to design technique \(\Rightarrow \) predictable

\[\Rightarrow \frac{(W / L)_6}{(W / L)_4} = 2 \frac{(W / L)_7}{(W / L)_5} \]
If this condition is not met, a systematic offset will result.

• \(C_C \) is Miller-multiplied by the gain of the second stage to provide the required dominant pole.
Input Common-Mode Range

- The lowest value of V_{ICM} has to be sufficiently large to keep Q_1 and Q_2 in saturation.

 $$V_{ICM} \geq -V_{SS} + V_{tn} + V_{OV3} - |V_{tp}|$$

- The highest value of V_{ICM} should ensure Q_5 in saturation.

 $$V_{ICM} \leq V_{DD} - |V_{OV5}| - V_{SG1}$$

 $$\Rightarrow V_{ICM} \leq V_{DD} - |V_{OV5}| - |V_{tp}| - |V_{OV1}|$$

 $$\Rightarrow -V_{SS} + V_{OV3} + V_{tn} - |V_{tp}| \leq V_{ICM} \leq V_{DD} - |V_{tp}| - |V_{OV1}| - |V_{OV5}|$$

Select the values of V_{OV} as low as possible!!
Output Swing

- Output swing

The extent of the output signal is limited at the lower and by the need to keep \(Q_6 \) saturated and at the upper end by the need to keep \(Q_7 \) saturated.

\[
-V_{SS} + V_{OV6} \leq v_O \leq V_{DD} - |V_{OV7}|
\]

Select the values of \(V_{OV} \) (of \(Q_6 \) and \(Q_7 \)) as low as possible!!

\(f_T \propto V_{OV} \) (in Sec. 6.2.3); the high-frequency performance of a MOSFET improves with the overdrive voltage at which it is operated.

- There must be a substantial overlap between the allowable range of \(V_{ICM} \) and \(v_O \) for an unit-gain amp application.
Example Two-Stage CMOS Op Amp Analysis

Let $I_{REF} = 25\mu A$, $|V_t|$ (for all devices) = 1V, $\mu_n C_{ox} = 20 \mu A/V^2$, $\mu_p C_{ox} = 10 \mu A/V^2$, $|V_A|$ (for all devices) = 25V, $V_{DD} = V_{SS} = 5V$. For all devices evaluate I_D, $|V_{GS}|$, g_m, and r_o. Also find A_1, A_2, the dc open-loop voltage gain, the input common-mode range, and the output voltage range. Neglect the effect of V_A on bias current.

Solution

1. Dc analysis: Since Q_8 and Q_5 are matched, $I = I_{REF}$.

 Thus, $Q_1 - Q_4 : I_{D1-4} = 12.5\mu A$.

 $Q_7 : I_{D7} = I_{REF} = 25\mu A$ (Q_7 is matched Q_5 and Q_8).

 $Q_6 : I_{D6} = 25\mu A$.

 With I_D of each device known, we use $I_C = \frac{1}{2}(\mu C_{ox}) (W/L)(|V_{GS}| - |V_t|)^2$ to determine $|V_{GS}|$.

2. Small-signal analysis:

 Transconductance $g_m = \mu C_{ox} (W/L)(|V_{GS}| - |V_t|) = \sqrt{2(\mu C_{ox})(W/L)I_D} = 2I_D/(|V_{GS}| - |V_t|)$

 r_o is determined from $r_o = \frac{|V_A|}{I_D}$.
Summary of the dc and ac parameters:

| I_D (μA) | $|V_{GS}|$ (V) | g_m (μA/V) | r_o (MΩ) |
|---------------|----------------|-----------------|-----------------|
| 12.5 | 1.4 | 62.5 | 2 |
| 12.5 | 1.4 | 62.5 | 2 |
| 12.5 | 1.5 | 50 | 2 |
| 12.5 | 1.5 | 50 | 2 |
| 25 | 1.6 | 83.3 | 1 |
| 25 | 1.6 | 100 | 1 |
| 25 | 1.6 | 83.3 | 1 |
| 25 | 1.6 | 83.3 | 1 |

3. Determine the voltage gain:

 Voltage gain of 1$^{\text{st}}$ stage: $A_1 = -g_{m1}(r_{o2} \parallel r_{o4}) = -62.5(2 \parallel 2) = -62.5$ V/V

 Voltage gain of 2$^{\text{nd}}$ stage: $A_2 = -g_{m6}(r_{o6} \parallel r_{o7}) = -100(1 \parallel 1) = -50$ V/V

 The overall dc open-loop gain: $A_v = A_1 \times A_2 = (-62) \times (-50) = 3125$ V/V

4. Operating range:

 The lower limit of the input CM range: Q_1 and Q_2 leave the saturation region.

 Since the drain of Q_1 is at $-5 + 1.5 = -3.5$ V, then the lower limit of the input CM range is -4.5 V.

 The upper limit of the input CM range: Q_5 leave the saturation region.

 $V_{lcm/max} = V_{DD} - |V_{GS5}| + |V_t| = 5 - 1.6 + 1 - 1.4 = 3$ V

 The output range is determined from Q_7 leaving the saturation region,

 $V_{Omax} = V_{DD} - |V_{GS7}| + |V_t| = 5 - 1.6 + 1 = 4.4$ V

 and from Q_6 leaving the saturation region,

 $V_{Omin} = -V_{SS} + |V_{GS6}| - |V_t| = -4.5$ V
Input Offset Voltage

- **Random offset**: device mismatches as random in nature
- **Systematic offset**: due to design technique \Rightarrow predictable

If the input stage is perfectly balanced, then $V_{DS4} = V_{DS3} = V_{GS4}$.

$\Rightarrow V_{GS4} = V_{GS6}$, hence $I_6 = \frac{(W/L)_6}{(W/L)_4} I_4 = \frac{(W/L)_6 I}{(W/L)_4 2}$

In order for no offset voltage to appear at the output, then $I_6 = I_7$.

Since $I_7 = \frac{(W/L)_7}{(W/L)_5} I$

$\Rightarrow \frac{(W/L)_6}{(W/L)_4} = 2 \frac{(W/L)_7}{(W/L)_5}$

If this condition is not met, a systematic offset will result.
Voltage Gain

Simplified small-signal equivalent circuit:

- $R_{in} = \infty$
- $G_{m1} = g_{m1} = g_{m2} \Rightarrow G_{m1} = \frac{2(I/2)}{V_{OV1}} = \frac{I}{V_{OV1}}$
- $R_1 = r_{o2} \parallel r_{o4}$
 - $r_{o2} = \frac{|V_{A2}|}{I/2}$
 - $r_{o4} = \frac{V_{A4}}{I/2}$
- Dc gain of 1st stage
 - $A_1 = -G_{m1}R_1 = -g_{m1}(r_{o2} \parallel r_{o4}) = -\frac{2}{V_{OV1}\left(\frac{1}{|V_{A2}|} + \frac{1}{V_{A4}}\right)}$
A_1 is increased by

1. Q_1 and Q_2 at a low overdrive
2. Choosing a longer channel length to obtain larger Early voltage, $|V_A|$

Both action, however, degrade the frequency response of the amplifier. (See Sec. 6.2.3)

- $G_{m2} = g_{m6} = \frac{2I_{D6}}{V_{OV6}}$
- $R_2 = r_{o6} \parallel r_{o7}$ \quad $r_{o6} = \frac{V_{A6}}{I_{D6}}$ \quad $r_{o4} = \frac{|V_{A7}|}{I_{D7}} = \frac{|V_{A7}|}{I_{D6}}$
- Dc gain of 2nd stage

$$A_2 = -G_{m2}R_2 = -g_{m6}(r_{o6} \parallel r_{o7}) = -\frac{2}{V_{OV6} \left(\frac{1}{V_{A6}} + \frac{1}{|V_{A7}|} \right)}$$

- Overall dc gain

$$A_v = A_1A_2 = G_{m1}R_1G_{m2}R_2 = g_{m1}(r_{o2} \parallel r_{o4})g_{m6}(r_{o6} \parallel r_{o7})$$

Generally, $500 \sim 5000$ V/V of $A_{v,\text{max}}$.

- Output resistance $R_o = r_{o6} \parallel r_{o7}$

R_o can be large (the tens-of-kilohms range) for on-chip op amps.
Frequency Response

Small-signal equivalent circuit of the CMOS op amp:

- **Transfer function:** (See Sec. 7.7.1)
 \[
 V_o = \frac{G_m(G_m - sC_C)R_1R_2}{1 + s[C_1R_1 + C_2R_2 + C_C(G_{m2}R_1R_2 + R_1 + R_2)] + s^2[C_1C_2 + C_C(C_1C_2 + C_C(C_1 + C_2))]R_1R_2}
 \]

- **Capacitances:**
 \[
 C_1 = C_{gd2} + C_{db2} + C_{gd4} + C_{db4} + C_{gs6}
 \]

 \[
 C_2 = C_{db6} + C_{db7} + C_{gd7} + C_L \quad \text{(Usually, } C_L \text{ is larger than transistor capacitances)}
 \]

- **Miller capacitance:**
 \[
 C_T = (1 + G_{m2}R_2)(C_C + C_{gd6}) \approx G_{m2}R_2C_C
 \]

- **Poles:**
 \[
 \omega_{p1} = \frac{1}{R_1[C_1 + (1 + G_{m2}R_2)C_C]} \approx \frac{1}{G_{m2}R_2C_CR_1}
 \]
 \[
 \omega_{p2} \approx \frac{G_{m2}C_C}{C_1C_2 + C_C(C_1 + C_2)}
 \]

- If \(C_2, C_C \gg C_1 \), then \(\omega_{p2} \approx \frac{G_{m2}}{C_2} \).

- The value of \(\omega_t \) is usually selected to be lower than the frequencies of nondominant poles and zeros. Thus, \(A_0 \omega_{p1} = \omega_t \Rightarrow \omega_t = \frac{G_{m1}}{C_C} \).
Zero: The Miller capacitance C_C introduces a right-half-plane zero.

\[V_o = 0 \Rightarrow sC_C V_{i2} = G_{m2} V_{i2} \Rightarrow s_z = G_{m2} / C_C \]

- Since G_{m2} is of the same order of magnitude as G_{m1}, the zero frequency will be close to ω_t.
- Since the zero is in the right half-plane, it will decrease the phase margin.
 \[\Rightarrow \text{?? stability} \]

- f_{p1} is the dominant pole formed by the interaction of Miller-multiplied C_C and R_1.

The unity-gain frequency:

\[f_t = |A_v| f_{p1} = \frac{G_{m1}}{2\pi C_C} \]

f_t must be lower than f_{p2} and f_z, thus the design must satisfy the following two conditions:

\[\frac{G_{m1}}{C_C} < \frac{G_{m2}}{C_2} \]
\[G_{m1} < G_{m2} \]
Simplification Equivalent Circuit Analysis

- The circuit applies for $f \gg f_{p1}$.

An ideal integrator!!
Phase Margin

- Pole-splitting provides a low-frequency dominant pole \(f_{p1} \) and shifts \(f_{p2} \) beyond \(f_t \).
- At \(f_t \), the phase lag exceed 90° caused by \(f_{p1} \) and the excess phase shift due to \(f_{p2} \):
 \[
 \phi_{p2} = -\tan^{-1}\left(\frac{f_t}{f_{p2}} \right)
 \]
 \[
 \phi_z = -\tan^{-1}\left(\frac{f_t}{f_z} \right)
 \]

Phase lag at \(f_t \):
 \[
 \phi_{total} = 90^\circ + \tan^{-1}(f_t / f_{p2}) + \tan^{-1}(f_t / f_z)
 \]

- Phase margin:
 \[
 = 180^\circ - \phi_{total}
 \]
 \[
 = 90^\circ - \tan^{-1}(f_t / f_{p2}) - \tan^{-1}(f_t / f_z)
 \]
- Phase margin & stability (See 8.10.2)
- The right half-plane zero decreases the phase margin.
Improve CMOS Op Amp with the Resistance R

Small-signal equivalent circuit of the CMOS op amp with the resistance R.

- Find zero:

$$\frac{V_{i2}}{R + 1/sC_C} = G_{m2}V_{i2} \Rightarrow s_z = \frac{1}{C_C(1/G_{m2} - R)}$$

- $R = 1/G_{m2}$, the zero can be placed at infinite frequency.
- $R > 1/G_{m2}$, a left-half plane zero introduces adds to the phase margin.

- Discussion: The second pole is not very far from ω_t. Thus the second pole introduces appreciable phase shift at ω_t, which reduces the phase margin.
Slew Rate

- When large output signal are present, slew-rate limiting can cause nonlinear distortion.
- Slew rate: the maximum rate of change possible at the output of a real op amp.

\[
SR = \left. \frac{dv_o}{dt} \right|_{\text{max}}
\]

- A unity-gain follower with a large step input.
 (the output voltage cannot change immediately.)

\[
\text{Slew rate: the maximum rate of change possible at the output of a real op amp.}
\]

\[
SR = \left. \frac{dv_o}{dt} \right|_{\text{max}}
\]

- A unity-gain follower with a large step input.
 (the output voltage cannot change immediately.)

\[
\text{Slew rate: the maximum rate of change possible at the output of a real op amp.}
\]

\[
SR = \left. \frac{dv_o}{dt} \right|_{\text{max}}
\]

- A unity-gain follower with a large step input.
 (the output voltage cannot change immediately.)

\[
\text{Slew rate: the maximum rate of change possible at the output of a real op amp.}
\]

\[
SR = \left. \frac{dv_o}{dt} \right|_{\text{max}}
\]

- A unity-gain follower with a large step input.
 (the output voltage cannot change immediately.)

\[
\text{Slew rate: the maximum rate of change possible at the output of a real op amp.}
\]

\[
SR = \left. \frac{dv_o}{dt} \right|_{\text{max}}
\]

- A unity-gain follower with a large step input.
 (the output voltage cannot change immediately.)

\[
\text{Slew rate: the maximum rate of change possible at the output of a real op amp.}
\]

\[
SR = \left. \frac{dv_o}{dt} \right|_{\text{max}}
\]
Slew Rate of the Two-Stage CMOS Op Amp

Model of the two-stage CMOS op amp when a large differential voltage is applied.

\[i_{D4} = I \]

\[v_o(t) = \frac{I}{C_C} t \]

\[\Rightarrow \quad SR = \frac{I}{C_C} \]
Relationship Between SR and f_t

Slew rate \[SR = \frac{I}{C_C} \]

\[G_{m1} = g_{m1} = \frac{I}{|V_{GS1}| - |V_t|} \]

\[\omega_t = \frac{G_{m1}}{C_C} \]

\[\Rightarrow SR = (|V_{GS1}| - |V_t|)\omega_t = V_{OV1}\omega_t \]

- For a given ω_t, the slew rate is determined by the overdrive voltage at which the first transistor are operated.
- $V_{OV} \uparrow \Rightarrow SR \uparrow$.
 ① For a given bias current I, a large V_{OV} is obtained if Q_1 and Q_2 are p-channel devices. (1st stage)
 ② It allows the 2nd stage to employ an n-channel device that has a greater transconductance, G_{m2}, resulting in a higher second-pole frequency and a corresponding higher ω_t.
Ex.10.1 Two-Stage CMOS Op Amp Design

Design a dc gain of 4000 V/V in a 0.5-µm CMOS technology.

\[V_{tn} = |V_{tp}| = 0.5V, \ k'_n = 200 \ \mu A/V^2, \ k'_p C_{ox} = 80 \ \mu A/V^2, \ V'_An = |V'_Ap| = 20V/\mu m, \ V_{DD} = V_{SS} = 1.65V, \ L = 1\mu m \text{ for all devices.} \text{ Let } I = 200\mu A, \ I_{D6} = 0.5mA. \]

If \(C_1 = 0.2pF \) and \(C_1 = 0.2pF \), find the required \(C_C \) and \(R \) to place the transmission zero at \(s = \infty \) for phase margin of 75°.

Solution

- **Voltage gain** \(A_v = g_m (r_{o2} \parallel r_{o4}) g_m (r_{o6} \parallel r_{o7}) = \frac{2(I/2) \cdot V_A}{V_{OV}} \cdot \frac{1}{2} \cdot \frac{V_A}{V_{OV}} \cdot \frac{2I_{D6}}{2} = \frac{V_A}{V_{OV}} \)

 \[A_v = 4000 \text{ and } V_A = 20V \Rightarrow 4000 = \frac{400}{V_{OV}^2} \Rightarrow V_{OV} = 0.316V \]

- **(W/L)_1 and (W/L)_2**:

 \[I_{D1} = \frac{1}{2} k'_p \left(\frac{W}{L} \right)_1 v_{OV}^2 \Rightarrow 100 = \frac{1}{2} \cdot 80 \left(\frac{W}{L} \right)_1 \cdot 0.316^2 \Rightarrow \left(\frac{W}{L} \right)_1 = \frac{25 \mu m}{1 \mu m} = \left(\frac{W}{L} \right)_2 \]
(W/L)_3 and (W/L)_4:
\[I_{D1} = \frac{1}{2} k_n \left(\frac{W}{L} \right)_3 v_{OV}^2 \Rightarrow 100 = \frac{1}{2} \cdot 200 \left(\frac{W}{L} \right)_3 \cdot 0.316^2 \Rightarrow \left(\frac{W}{L} \right)_3 = \frac{10 \mu m}{1 \mu m} = \left(\frac{W}{L} \right)_4 \]

(W/L)_5:
\[I_{D5} = \frac{1}{2} k_p \left(\frac{W}{L} \right)_5 v_{OV}^2 \Rightarrow 200 = \frac{1}{2} \cdot 80 \left(\frac{W}{L} \right)_5 \cdot 0.316^2 \Rightarrow \left(\frac{W}{L} \right)_5 = \frac{50 \mu m}{1 \mu m} \]

(W/L)_6 and (W/L)_7:
\[\left(\frac{W}{L} \right)_7 = 2.5 \left(\frac{W}{L} \right)_5 = \frac{125 \mu m}{1 \mu m} \quad 500 = \frac{1}{2} \cdot 200 \left(\frac{W}{L} \right)_6 \cdot 0.316^2 \Rightarrow \left(\frac{W}{L} \right)_6 = \frac{50 \mu m}{1 \mu m} \]

Select \(I_{REF} = 20 \mu A \), thus \(\left(\frac{W}{L} \right)_8 = 0.1 \left(\frac{W}{L} \right)_5 = \frac{5 \mu m}{1 \mu m} \)

Input CM range: \(-1.33 \text{ V} \leq V_{ICM} \leq 0.52 \text{ V}\)

Max. signal swing: \(-1.33 \text{ V} \leq v_o \leq 1.33 \text{ V}\)

Input resistance: \(R_i = \infty \)

Output resistance: \(R_o = r_{o6} || r_{o7} = 20 \text{ k}\Omega \)

Determine \(f_{p2} \):
\[G_{m2} = g_{m6} = \frac{2I_{D6}}{V_{OV}} = \frac{2 \times 0.5}{0.316} = 3.2 \text{ mA/V} \Rightarrow f_{p2} \approx \frac{G_{m2}}{2\pi C_2} = \frac{3.2 \times 10^{-3}}{2\pi \cdot 0.8 \times 10^{-12}} = 637 \text{ MHz} \]
To move the transmission zero to $s = \infty$, we select the value of R as

$$R = \frac{1}{G_{m2}} = \frac{1}{3.2 \times 10^{-3}} = 316\Omega$$

For a phase margin of 75°, the phase shift due to f_{p2} at $f = f_t$ must be 15°, that is

$$\tan^{-1} \frac{f_t}{f_{p2}} = 15^\circ$$

$$f_t = 637 \times \tan 15^\circ = 171MHz$$

Determine C_C:

$$C_C = \frac{G_{m1}}{2\pi f_t} \quad \text{where} \quad G_{m1} = g_{m1} = \frac{2 \cdot 100 \mu A}{0.316V} = 0.63mA/V$$

$$\therefore C_C = \frac{0.6 \times 10^{-3}}{2\pi \cdot 171 \times 10^6} = 0.6pF$$

Slew rate: [Eq. (9.40)]

$$SR = 2\pi f_t V_{OV} = 2\pi \cdot 171 \times 10^6 \times 0.316 = 340V/\mu s$$
Cascode CMOS Op Amp

Output resistance:
\[R_o = R_{o2C} \parallel R_{o4C} = (g_{m2C}r_{o2C}r_{o2}) \parallel (g_{m4C}r_{o4C}r_{o3}) \]

Gain:
\[A_1 = -g_{m1}R_o \]

- Composed of CS + CG.
- A high-gain single-stage op amp
- High output resistance: Increasing \(R_o \) by about two orders of magnitude increases \(A_1 \) by the same factor.
- But the input common-mode range is lower than that obtained in the two-stage amplifier.

Folded-cascode configuration have large common-mode range.
Folded-Cascode CMOS Op Amp

Folded: replace input transistor pairs with a counterpart.
More Complete Circuit for the Folded-Cascode CMOS Op Amp
Input common-mode range:

V_{ICM}^{max} is limited by the requirement that Q_1 and Q_2 operate in saturation.

$$V_{ICM}^{max} = V_{DD} - |V_{OV9}| + V_{tn}$$

V_{ICM}^{max} should ensure Q_{11} in saturation.

$$V_{ICM}^{min} = -V_{SS} + V_{OV11} + V_{OV1} + V_{tn}$$

$$-V_{SS} + V_{OV11} + V_{OV1} + V_{tn} \leq V_{ICM}^{max} \leq V_{DD} - |V_{OV9}| + V_{tn}$$

V_{BIAS3} should be selected to provide I while operating Q_{11} at a low overdrive voltage.

Output voltage swing:

Upper limit of v_o is determined by the need to maintain Q_{10} and Q_4 in saturation.

$$v_{o}^{max} = V_{DD} - |V_{OV10}| - |V_{OV4}|$$

Select V_{BIAS1} so that Q_{10} operates at the edge of saturation:

$$V_{BIAS1} = V_{DD} - |V_{OV10}| - V_{SG4}$$

Lowest v_o is obtained when Q_6 reaches the edge of saturation.

$$v_{o}^{min} = -V_{SS} + V_{OV7} + V_{OV5} + V_{tn}$$
- Voltage gain

Small-signal equivalent circuit:

Transconductance

\[G_m = g_{m1} = g_{m2} \quad G_m = \frac{2(I / 2)}{V_{OV1}} = \frac{I}{V_{OV1}} \]

Output resistance

\[R_o = R_{o4} \parallel R_{o6} \quad R_{o4} \approx (g_{m4}r_{o4})(r_{o2} \parallel r_{o10}) \quad R_{o6} \approx g_{m6}r_{o6}r_{o8} \]

\[R_o = \left[g_{m4}r_{o4}(r_{o2} \parallel r_{o10}) \right] \parallel (g_{m6}r_{o6}r_{o8}) \]

Open-loop gain

\[A_v = G_mR_o = g_{m1} \left\{ \left[g_{m4}r_{o4}(r_{o2} \parallel r_{o10}) \right] \parallel (g_{m6}r_{o6}r_{o8}) \right\} \]
- Unity-gain buffer (voltage follower):

Output resistance \[R_{of} = \frac{R_o}{1 + A_v} \approx \frac{R_o}{A_v} = \frac{R_o}{G_mR_o} = \frac{1}{G_m} = \frac{1}{g_{m1}} \]

- It is not very small for a single-stage op amp (OTA, operational transconductance amplifier).
- An ideal op amp has an zero output resistance!
Frequency response:
Since the primary purpose of CMOS op amps is to feed capacitive loads, C_L is usually large, and the pole at the output becomes dominant.

- **Transfer function**
 \[
 \frac{V_o}{V_{id}} = \frac{G_m R_o}{1 + sC_L R_o}
 \]

- **Dominant pole**
 \[
 f_p = \frac{1}{2\pi C_L R_o}
 \]

- **Unity-gain frequency**
 \[
 f_t = A_v f_p = G_m R_o f_p = \frac{G_m}{2\pi C_L}
 \]

- **Discussion**
 Single-stage op amp: $C_L \uparrow \Rightarrow f_{p1}$, $f_t \downarrow \Rightarrow$ phase margin \uparrow
 Two-stage op amp: $C_L \uparrow \Rightarrow f_{p2}$ $\downarrow \Rightarrow$ phase margin \downarrow
• Slew Rate: a large differential input signal is applied. \((I_B > I)\)

\[
SR = \frac{I}{C_L} = 2\pi f_t V\text{OV1}
\]
Ex10.2 Design of a folded-cascode op amp.

$I = 200 \mu A$, $I_B = 250 \mu A$, and $|V_{OV}| = 0.25V$ for all transistors. $V_{DD} = V_{SS} = 2.5V$

$K_n' = 100 \mu A/V^2$, $K_p' = 40 \mu A/V^2$, $|V_A'| = 20V/\mu m$. $L = 1\mu m$, $C_L = 5pF$.

- Find I_D, g_m, r_o and W/L for all transistors.

$$g_m = \frac{2I_D}{V_{OV}} = \frac{2I_D}{0.25}$$

$$r_o = \frac{|V_A|}{I_D} = \frac{20}{I_D}$$

$$\left(\frac{W}{L}\right)_i = \frac{2I_{Di}}{k'V_{OV}^2}$$

Note: for all transistors

$$g_m r_o = 160 \ V / V$$

$$V_{GS} = 1.0 \ V$$
• Find the allowable range of V_{ICM} and of the output voltage swing. (p.9-29)

$$-1.25V \leq V_{ICM} \leq 3V \quad -1.25V \leq v_o \leq 2V$$

• Determine the values of A_v, f_t, f_p, and SR. (p.9-30, -32, -33)

$$R_{o4} = 160(200||80) = 9.14M\Omega \quad R_{o6} = 21.28M\Omega$$

$$R_o = R_{o4}||R_{o6} = 6.4M\Omega$$

$$A_v = G_mR_o = 0.8 \times 10^{-3} \cdot 6.4 \times 10^6 = 5120V/V$$

$$f_t = \frac{G_m}{2\pi C_L} = \frac{0.8 \times 10^{-3}}{2\pi \cdot 5 \times 10^{-12}} = 25.5MHz$$

$$f_p = \frac{f_t}{A_v} \left(\text{or} \quad \frac{1}{2\pi C_L R_o} \right) = \frac{25.5MHz}{5120} = 5kHz$$

$$SR = \frac{I}{C_L} = \frac{200 \times 10^{-6}}{5 \times 10^{-12}} = 40V/\mu s$$

• What is the power dissipation of the op amp?

$$P_D = 5V \times 0.5mA = 2.5mW$$
Rail-to-Rail Input Operation (Increasing V_{ICM})

A folded-cascode op amp that employs two parallel complementary input stages to achieve rail-to-rail input CM operation.

$$\Delta i = G_m(V_{id}/2)$$
$$G_m = g_{m1} = g_{m2} = g_{m3} = g_{m4}$$
Output voltage \[V_o = 2G_mR_oV_id \]

Voltage gain \[A_v = \frac{V_o}{V_id} = 2G_mR_o \]

Operation analysis:

Over the remainder of the input CM range, only one of two differential pairs will be operational, and the gain drops to half.
Wide-Swing Current Mirror (Increasing the Output Voltage Range)

The minimum voltage allowed at the output is $V_t + 2V_{OV}$.

The minimum voltage allowed at the output is $2V_{OV}$.
Homework-1

- Problems: 3, 5, 6, 8, 11, 13, 15, 17
741 Op-Amp

- 741 op-amp uses a large number of transistors but relatively few resistors and only one capacitor.
 - R and C occupy large silicon area.
 - C needs more fabrication steps.
 - High-quality R & C are not easy to fabricate.
- Circuit Diagram in next page.
741 Op-Amp

Input stage

Bias generation

Bias

2nd gain stage

Protecting

Class AB

Output stage

Microelectrics (III)
Microelectronics (III)

1.9-39
741 Op-Amp Circuit

In keeping with the IC design philosophy the circuit uses a large number of transistors, but relatively few transistors, and only one capacitor. This philosophy is dictated by the economics (silicon area, ease of fabrication, quality of realizable components) of the fabrication of active and passive components in IC form.

741 op-amp consists of three stages

1) Input differential stage
2) Single-ended high-gain stage
3) Output-buffering stage
Bias Circuit: $Q_{11}, Q_{12}, Q_{10}, R_4, Q_8, Q_9, Q_{13}$

- Bias current I_{REF} is generated in the branch, consisting of the two diode-connected transistors Q_{11} and Q_{12} and the resistance R_5.
- Using a Widlar current source formed by Q_{11}, Q_{10}, and R_4, bias current for the first stage is generated in the collector of Q_{10}.
- Another current mirror formed by Q_8 and Q_9 takes part in biasing the first stage.
- Double-collector PNP Q_{13}:

Current mirror:

$$\frac{I_O}{I_{REF}} \approx \frac{A_{E(Q_A)}}{A_{E(Q_B)}}$$

A_E is emitter area.
The Input Stage: \(Q_1 \sim Q_7, R_1 \sim R_3 \).
- Biased by \(Q_8, Q_9, \) and \(Q_{10} \) provide high input impedance.
- \(Q_3 \) and \(Q_4 \) are lateral PNP (low \(\beta \)) higher emitter-base junction breakdown than NPNs.
 \(\Rightarrow \) protect input transistors \(Q_1 \) and \(Q_2 \) when they are accidentally shorted to supply voltages.
- \(Q_5 \sim Q_7, R_1 \sim R_3 \) provide high-resistance load and single ended output.
- Level shifter: \(Q_3 \) and \(Q_4 \)
The Second Stage: $Q_{16}, Q_{17}, Q_{13B}, R_8, R_9$
- Q_{16} acts as an emitter follower, thus giving
 1. high input resistance
 2. low base current if R_9 is large, hence low loading of the first stage.
- Q_{17}: common base configuration active load formed by Q_{13B} (active load is better than resistor load).
- C_C: Miller capacitor for pole-splitting compensation 30PF area occupied is about 13 times that of a standard NPN transistor.
The Output Stage:
1) provide low output resistance
2) class AB

The 741 uses an efficient class AB output stage, which consists of the complementary pair Q_{14} and Q_{20} with biasing devices Q_{13A}, Q_{18} and Q_{19}, and an input buffer Q_{23}. (where Q_{20} is a substrate pnp.)

Short-Circuit Protection Circuitry

Transistors Q_{15}, Q_{21}, Q_{24}, and Q_{22}, and resistors R_6 and R_7 serve to protect the amplifier against output short circuits and these transistors are normally off.
● Device Parameters:

- **The standard transistors:**
 - \(npn \): \(I_S = 10^{-14} \) A, \(\beta = 200 \), \(V_A = 125 \) V
 - \(pnp \): \(I_S = 10^{-14} \) A, \(\beta = 50 \), \(V_A = 50 \) V

- **The nonstandard transistors:** \(Q_{13}, Q_{14}, \) and \(Q_{20} \).
 - \(Q_{13A} \) : \(I_{SA} = 0.25 \times 10^{-14} \) A
 - \(Q_{13B} \) : \(I_{SA} = 0.75 \times 10^{-14} \) A
 - \(Q_{14} \) & \(Q_{20} \) : \(I_S = 3 \times 10^{-14} \) A (have an area three times that of a standard device)

Output transistors usually have large areas in order to be able to supply large load currents and dissipate relatively large amounts of power with only a moderate increase in the device temperature.

Microelectrics (III)
Output Stages (in Chap. 13)

- Class A output stage: Emitter follower

Large power is dissipated in the transistor!!
Output Stages

- **Class B output stage**

There exists a range of v_I centered around zero where both transistors are cut off and v_O is zero. This dead band results in the **crossover distortion**!
Output Stages

- Class AB output stage
Reference Bias Current & Input-Stage Bias

- Reference bias current

\[I_{REF} = \frac{V_{CC} - V_{EB12} - V_{BE11} - (-V_{EE})}{R_5} = 0.73 \text{ mA} \]

- Input-stage bias

Widlar current source:

\[V_{BE11} - V_{BE10} = I_{C10} R_4 \]

\[\Rightarrow V_T \ln \left(\frac{I_{REF}}{I_{C10}} \right) = I_{C10} R_4 \]

\[\Rightarrow I_{C10} = 19 \mu A \quad \text{(solved by trial and error)} \]
$I_{C1} = I_{C2} \Rightarrow I_{E3} = I_{E4} \approx I \text{ (High } \beta\text{)}$

$I_{C9} = \frac{2I}{1 + 2/\beta}$ \[\text{pp: 509, Eq.(6.69)}\]

$\Rightarrow 2I \approx I_{C10} \text{ (} \beta\gg 1\text{)}$

For the 741, $I_{C10} = 19 \mu A$, thus $I \approx 9.5 \mu A$.

We have $I_{C1} = I_{C2} \approx I_{C3} = I_{C4} = 9.5 \mu A$
Neglect the base current of Q_{16}, then

$I_{C6} \approx I$

Neglect the base current of Q_7, then

$I_{C5} \approx I$

Bias current of Q_7: (KCL at node-A)

$I_{C7} \approx I_{E7} = \frac{2I}{\beta_N} + \frac{V_{BE6} + IR_2}{R_3}$

Determine V_{BE6}: ($I_S = 10^{-14}$ A)

$V_{BE6} = V_T \ln\left(\frac{I}{I_S}\right) = 517 \text{ mV}$

\[\Rightarrow \quad I_{C7} = 10.5 \mu\text{A} \]
• Input bias current
\[I_B = \frac{I_{B1} + I_{B2}}{2} \]

For the 741,
\[I_B = \frac{I}{\beta_N} \quad \Rightarrow \quad \text{Using } \beta_N = 200, \text{ yields } I_B = 47.5 \text{ nA}. \]

Much lower input bias currents can be obtained using an FET input stage.

• Input offset currents

Because of possible mismatches in the \(\beta \) mismatch, the input offset current is defined as

\[I_{OS} = |I_{B1} - I_{B2}| \]

• Input offset voltage

The input offset voltage is determined primarily by mismatches between the two sides of the input stage. In the 741 op amp, the input offset voltage is due to mismatches between \(Q_1 \) and \(Q_2 \), between \(Q_3 \) and \(Q_4 \), between \(Q_5 \) and \(Q_6 \), and between \(R_1 \) and \(R_2 \).

• Input common-mode range

- The input common-mode range is the range of input common-mode voltages over which the input stage remains in the linear active mode.

- In the 741, the input common-mode range is determined at the upper end by saturation of \(Q_1 \) and \(Q_2 \), and at the lower end by saturation of \(Q_3 \) and \(Q_4 \).
Second-Stage Bias

\[I_{C13B} \approx 0.75I_{REF} \quad (\beta_P >> 1) \]

\[\Rightarrow I_{C13B} = 550 \, \mu A \quad \text{and} \quad I_{C17} \approx 550 \, \mu A \]

\[V_{BE17} = V_T \ln \left(\frac{I_{C17}}{I_S} \right) = 618 \, \text{mV} \]

\[I_{C16} \approx I_{E16} = I_{B17} + \frac{I_{E17}R_8 + V_{BE17}}{R_9} = 16.2 \, \mu A \]
Output-Stage Bias

\[I_{C13B} \approx 0.25I_{REF} \approx I_{E23} \]
\[I_{C23} \approx I_{E23} \approx 0.25I_{REF} = 180 \, \mu A \]
\[V_{BE18} \approx 0.6 \, V \Rightarrow I_{R10} = 15 \, \mu A \]
\[I_{E18} = 180 - 15 = 165 \, \mu A \approx I_{C18} \]
\[\Rightarrow V_{BE18} = 588 \, mV \]
\[I_{B18} = 165 / 200 = 0.8 \, \mu A \]
\[\Rightarrow I_{C19} \approx I_{E19} = 15.8 \, \mu A \]
\[V_{BE19} = V_T \ln \left(\frac{I_{C19}}{I_S} \right) = 530 \, mV \]
\[V_{BB} = V_{BE18} + V_{BE19} = 1.118 \, V \]
\[V_{BB} = V_T \ln \left(\frac{I_{C14}}{I_{S14}} \right) + V_T \ln \left(\frac{I_{C20}}{I_{S20}} \right) \]
\[I_{S14} = I_{S20} = 3 \times 10^{-14} \, A \]
\[\Rightarrow I_{C14} = I_{C20} = 154 \, \mu A \]
Summary of Dc Bias of the 741 Circuit

<table>
<thead>
<tr>
<th>Q</th>
<th>9.5</th>
<th>Q8</th>
<th>19</th>
<th>Q13B</th>
<th>550</th>
<th>Q19</th>
<th>15.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2</td>
<td>9.5</td>
<td>Q9</td>
<td>19</td>
<td>Q14</td>
<td>154</td>
<td>Q20</td>
<td>154</td>
</tr>
<tr>
<td>Q3</td>
<td>9.5</td>
<td>Q10</td>
<td>19</td>
<td>Q15</td>
<td>0</td>
<td>Q21</td>
<td>0</td>
</tr>
<tr>
<td>Q4</td>
<td>9.5</td>
<td>Q11</td>
<td>730</td>
<td>Q16</td>
<td>16.2</td>
<td>Q22</td>
<td>0</td>
</tr>
<tr>
<td>Q5</td>
<td>9.5</td>
<td>Q12</td>
<td>730</td>
<td>Q17</td>
<td>550</td>
<td>Q23</td>
<td>180</td>
</tr>
<tr>
<td>Q6</td>
<td>9.5</td>
<td>Q13A</td>
<td>180</td>
<td>Q18</td>
<td>165</td>
<td>Q24</td>
<td>0</td>
</tr>
<tr>
<td>Q7</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Small-Signal Analysis of the 741 Input Stage

The differential signal v_i applied between the input terminals effectively appears across four equal emitter resistances connected in series – those of Q_1, Q_2, Q_3, and Q_4.

$$i_e = \frac{v_i}{4r_e}$$

where

$$r_e = \frac{V_T}{I} = \frac{25 \text{ mV}}{9.5 \text{ } \mu\text{A}} = 2.63 \text{ k}\Omega$$

The input differential resistance of the op amp is

$$R_{id} = 4(\beta_N + 1)r_e$$

For $\beta_N = 200$, we obtain $R_{id} = 2.1 \text{ M}\Omega$.
Small-Signal Analysis of the Input Stage with Load Stage

The output node of the input stage: output current \(i_o = 2\alpha i_e \).

The factor of two indicates that conversion from differential to single-ended is performed without losing half the signal.

Transconductance of the input stage: \(G_{m1} \equiv \frac{i_o}{v_i} = \frac{\alpha}{2r_e} \)

Substituting \(r_e = 2.63 \ \text{k}\Omega \) and \(\alpha \approx 1 \) yields \(G_{m1} = 1/5.26 \ \text{mA/V} \).
Output Resistance of the First Stage

The output resistance of the input stage:

$$R_{o1} = R_{o4} \parallel R_{o6}$$
\[R_{o4} = r_{o4} + (1 + g_{m4}r_{o4})R'_E \]
\[\approx r_{o4}(1 + g_{m4}R'_E) \]

where \(R'_E = r_{e2} \parallel r_\pi \) and \(r_o = V_A / I \).

\(V_A = 50 \text{ V}, I = 9.5 \text{ µA}, \)
\(r_{e2} = 2.63 \text{ kΩ}. \)
\(\Rightarrow R_{o4} = 10.5 \text{ MΩ} \)

\[R_{o6} = r_{o6} + (1 + g_{m6}r_{o6})(R_2 \parallel r_\pi) \]
\[\approx r_{o6}[1 + g_{m6}(R_2 \parallel r_\pi)] \]
\(\Rightarrow R_{o6} = 18.2 \text{ MΩ} \)

The output resistance of the input stage: \(R_{o1} = R_{o4} \parallel R_{o6} = 6.7 \text{ MΩ} \)
Small-Signal Equivalent Circuit for the Input Stage of the 741 Op Amp

The equivalent circuit is a simplified version of the y-parameter model of a two-port with y_{12} assumed negligible.

\[R_{id} = 2.1 \text{ M\Ohm} \]
\[G_{m1} = 1/5.26 \text{ mA/V} \]
\[R_{o1} = 6.7 \text{ M\Ohm} \]
Ex: 10.3 mismatch in the Input Stage

Input stage with both inputs grounded and a mismatch ΔR between R_1 and R_2.

\[
\begin{align*}
V_{BE5} + IR &= V_{BE6} + (I - \Delta I)(R + \Delta R) \\
\Rightarrow V_{BE5} - V_{BE6} &= I\Delta R - \Delta I(R + \Delta R) \\
\text{and} \quad V_{BE5} - V_{BE6} &= I_{E5}r_{e5} - I_{E6}r_{e6} \approx \Delta I r_e \\
\Rightarrow \quad \frac{\Delta I}{I} &= \frac{\Delta R}{R + \Delta R + r_e}
\end{align*}
\]

A 2% mismatch between R_1 and R_2:

- Substituting $R = 1 \, \text{k}\Omega$, $r_e = 2.63 \, \text{k}\Omega$, we have $\Delta I = 5.5 \times 10^{-3} \, I$.
- To reduce this output current to zero, we have to apply an input voltage V_{OS} given by

\[
V_{OS} = \frac{\Delta I}{G_{m1}} = \frac{5.5 \times 10^{-3} I}{G_{m1}}
\]

\[
I = 9.5 \, \mu\text{A}, \quad G_{m1} = 1/5.26 \, \text{mA/V} \quad \Rightarrow \quad V_{OS} \approx 0.3 \, \text{mV}
\]
Ex: 10.4 CMRR of 741 input stage

Total resistor at node - Y:

\[R_o = R_{o9} \parallel R_{o10} \]

KCL at node - Y:

\[2i + \frac{2i}{\beta_p} = \frac{v_{icm}}{R_o} \text{, if } \beta_p \gg 1 \]

\[i \approx \frac{v_{icm}}{2R_o} \]

\[i_o = \varepsilon_m i \]

\[G_{mcm} = \frac{i_o}{v_{icm}} = \frac{\varepsilon_m i}{v_{icm}} = \frac{\varepsilon_m}{2R_o} \]

\[CMRR \equiv \frac{G_{m1}}{G_{mcm}} = 2g_{m1}R_o / \varepsilon_m \]

\[CMRR = 2g_{m1}(R_{o9} \parallel R_{o10}) / \varepsilon_m \]
2nd stage: Input Resistance & Transconductance

- Input resistance

\[R_{i2} = (\beta_{16} + 1)[r_{e16} + R_9][(\beta_{17} + 1)(r_{e17} + R_8)] \]

\[\approx 4 \text{ M}\Omega \]

- Transconductance

\[i_{c17} = \frac{\alpha v_{b17}}{r_{e17} + R_8} \]

\[v_{b17} = v_{i2} \frac{R_9 R_{i17}}{(R_9 R_{i17}) + r_{e16}} \]

\[R_{i17} = (\beta_{17} + 1)(r_{e17} + R_8) \]

\[\Rightarrow G_{m2} = \frac{i_{c17}}{v_{i2}} = 6.5 \text{ mA/V} \]
Output resistance \(R_{o2} = R_{o13B} \parallel R_{o17} \)

where \(R_{o13B} = r_{o13B} = 90.9 \text{ k}\Omega. \)

Since the resistance between the base of \(Q_{17} \) and ground is relatively small, the base is about grounded.

Thus, \(R_{o17} \approx 787 \text{ k}\Omega, \) and hence \(R_{o2} \approx 81 \text{ k}\Omega. \)
Note that the stage open-circuit voltage gain is $-G_m R_o$.

$-G_m R_o \omega_{12} = \omega_{02}$.
The output stage is of the AB class, with the network composed of Q_{18}, Q_{19}, and R_{10} providing the bias of the output transistors Q_{14} and Q_{20}.

The emitter follower Q_{23} provides added buffering, which makes the op-amp gain almost independent of the parameters of the output transistors.
Output Voltage Limits

\[v_{o\text{max}} = V_{CC} - V_{CE\text{sat}} - V_{BE14} \]
\[v_{o\text{min}} = -V_{EE} + V_{CE\text{sat}} + V_{EB23} + V_{EB20} \]

(neglecting the voltage drop across \(R_8 \))
Small-Signal Model of the 741 Output Stage

the second stage

Find R_{i3}:

- The input resistance looking into the base of Q_{20}, $R_{B20} \approx \beta_{20} R_L = 50 \times 2 \text{ k}\Omega = 100 \text{ k}\Omega$.
- R_{B20} appears in parallel with the series combination of the output resistance of Q_{13A} ($r_{o13A} \approx 280 \text{ k}\Omega$) and the resistance of the $Q_{18} - Q_{19}$ network (very small).
- The total resistance in the emitter of Q_{23}, $R_{E23} \approx 100 \text{ k}\Omega \parallel 280 \text{ k}\Omega = 74 \text{ k}\Omega$.
- The input resistance $R_{i3} \approx \beta_{20} R_{E23} = 50 \times 74 \text{ k}\Omega \approx 3.7 \text{ M}\Omega$.

Open-circuit voltage voltage gain, μ:

$$\mu = \left. \frac{V_o}{V_{o2}} \right|_{R_L = \infty} \approx 1$$

- With $R_L = \infty$, the gain of the emitter-follower output transistor (Q_{14} or Q_{20}) will be nearly unity.
- With $R_L = \infty$ the resistance in the emitter of Q_{23} will be very large.
Find the output resistance, R_o:

- Substituting $R_{o2} = 81 \ \text{k}\Omega$, $\beta_{23} = 50$, and $r_{e23} = 25/0.18 = 139\ \Omega$ yields $R_{o23} = 1.73 \ \text{k}\Omega$.
- For an output current of 5mA, r_{e20} is 5 \ \Omega and $R_o = 39 \ \Omega$ with $\beta_{20} = 50$.
Output Short-Circuit Protection

- If the op-amp output terminal is short-circuited to one of the power supplies, one of the two output transistors could conduct a large amount of current. ⇒ resulting in sufficient heating to cause burnout of the IC.

- Mechanism
 - R_6 together with Q_{15} limits the current that would flow out of Q_{14} in the event of a short circuit.
 - If the current in the emitter of Q_{14} exceeds about 20 mA, the voltage drop across R_6 exceeds 540 mV, which turns Q_{15} on.
 - As Q_{15} turns on, its collector robs some of the current supplied by Q_{13A}, thus reducing the base current of Q_{14}.
 - This mechanism thus limits the maximum current that op amp can source to about 20 mA.
 - The relevant circuit is composed of R_7, Q_{21}, Q_{24}, and Q_{22}. The current in the inward direction is limited also to about 20 mA.
Microelectrics (III)
Small-Signal Gain of the 741

Cascading the small-signal equivalent circuits of the individual stages for the evaluation of the overall voltage gain

Overall gain:

\[
\frac{v_o}{v_i} = \frac{v_{i2}}{v_i} \frac{v_{o2}}{v_{i2}} \frac{v_o}{v_{o2}} = -G_m \left(R_{o2} \parallel R_{i2} \right) \left(-G_{m2}R_{o2}\right)\mu \frac{R_L}{R_L + R_o}
\]

\[
\frac{v_o}{v_i} = -476.1 \times (-526.5) \times 0.97 = 243,147 \text{ V/V} = 107.7 \text{ dB}
\]
Frequency Response of the 741

Miller compensation technique – to introduce a dominant low-frequency pole

- A 30-pF capacitor (C_C) is connected in the negative-feedback path of the second stage. The effective capacitance due to C_C between the base of Q_{16} and ground is

$$C_i = C_C \left(1 + |A_2| \right)$$

where $A_2 = -515$, and hence $C_i = 15,480$ pF.

- The total resistance between the base of Q_{16} and ground is

$$R_t = (R_{o1} \parallel R_{i2}) = (6.7 \, \text{M}\Omega \parallel 4 \, \text{M}\Omega) = 2.5 \, \text{M}\Omega$$

- The dominant pole:

$$f_p = \frac{1}{2\pi C_i R_t} = 4.1 \, \text{Hz}$$

- Unit-gain bandwidth

$$f_i = A_0 \times f_{3\text{dB}} \approx 1 \, \text{MHz}$$

- Phase margin $= -90^\circ$

In practice, PM $\approx -80^\circ$ due to nondominant pole.

This phase margin is sufficient to provide stable operation of close-loop amplifier with any value of feedback factor β.

Microelectronics (III)

1.9-73
A Simplified Model Based on Modeling the Second Stage as an Integrator

\[A(s) = \frac{V_o(s)}{V_i(s)} = \frac{G_{m1}}{sC_C} \Rightarrow A(j\omega) = \frac{G_{m1}}{j\omega C_C} \]

Unity-gain frequency: \(\omega_t = \frac{G_{m1}}{C_C} \)

Substituting \(G_{m1} = 1/5.26 \) mA/V and \(C_C = 30 \) pF yields \(f_t = \frac{\omega_t}{2\pi} \approx 1 \) MHz

This model is valid only at frequency \(f >> f_{3dB} \). At such frequencies the gain falls off with a slope of \(-20dB/\)decade, just like that of an integrator.
Slew Rate of the 741

- A unity-gain follower with a large step input

Since the output voltage cannot change immediately, a large differential voltage appears between the op amp input terminal.

- Model for the 741 op amp when a large differential signal is applied

Output voltage:
\[v_o(t) = \frac{2I}{C_C} t \]

Slew rate:
\[SR = \frac{2I}{C_C} \]

For the 741, \(I = 9.5 \, \mu A \) and \(C_C = 30 \, \text{pF} \), resulting in \(SR = 0.63 \times 10^6 \, \text{V/s} \).
Relationship Between f_t and SR

- G_{m1}: $G_{m1} = 2 \frac{1}{4r_e}$

 where r_e is the emitter resistance of each of Q_1 through Q_4.
 Thus,
 $$r_e = \frac{V_T}{I} \quad \text{and} \quad G_{m1} = \frac{I}{2V_T}$$

- ω_t: $\omega_t = \frac{G_{m1}}{C_C} = \frac{I}{2C_C V_T} \quad \Rightarrow \quad \omega_t = \frac{SR}{4V_T}$

- SR: $SR = 4V_T \omega_t$
 For the 741 we have $SR = 4 \times 25 \times 10^3 \times 2\pi \times 10^6 = 0.63 \times 10^6$ V/s.

- A general form for the relationship between SR and ω_t for an op amp with a structure similar to that of the 741 is
 $$SR = \left(\frac{2}{a} \right) \omega_t$$

 where a is the constant of proportionality relating transconductance of the first stage G_{m1}, to the first-stage bias current I, $G_{m1} = aI$.
 For a given ω_t, a higher value of SR is obtained by making a smaller;
 $\Rightarrow I = \text{constant}, \ G_{m1} \downarrow$.

Microelectrics (III)
Home work-2

- Problems: 20, 21, 22, 23, 24, 28, 35, 36, 40, 41, 48, 49, 52