路迢自動停車收質柱系䋁
 Members：陳冠瑋，袁鈺梦
Dept．of Electrical Engineering，National Chung HsingUniversity

## Abstract

Traditional license plate recognition systems usually recognize scenes with fixed angles，small tilt angles，and abundant light sources．

This work proposes a series of image processing algorithms to handle sharp camera angles，poor lighting，and license plate defect．In addition，to reduce system power consumption，a low－power embedded AI inference vehicle detection device（ESP32－CAM）is added at the edge of the system as a wake－up sensor．

## Introduction

This project uses NVIDIA Jetson Nano as the primary computing platform and ESP32－CAM as the edge inference device for vehicle detection． Mainly through MobileNet v2 for vehicle detection，YOLO v3 for license plate detection， and image processing for extracting and correcting the license plate features．Finally，we use AlexNet and Optical Character Recognition （OCR）for the license plate character recognition．


## Edge Inference

Vehicle Detection（MobileNet v2）
Advantages：
－Real－Time
－Low Power
－Low Price
－Reliability
－Security


## Quantization（int8）



## Pre－processing

## LP Positioning

－Basic image pre－processing（denoise）
－Image segmentation：GrabCut
－LP tilt correction：Hough line transformation
－Morphology
－Defect repairing：Convex hull
－Restore LP：Perspective transformation

| Step | Procedure | Result | Step | Procedure | Result |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\begin{gathered} \text { LP detection } \\ \text { (YOLO v3) } \end{gathered}$ |  | 6 | LP mask |  |
| 2 | Region of Interest （ROI） |  | 7 | LP positioning |  |
| 3 | GrabCut |  | 8 | Perspective Transformation | 7616．LF |
| 4 | Morphology |  | 9 | After <br> Pre－processing | 7616LF |
| 5 | Convex Hull |  |  |  |  |

－Oblique LP Recognition


A Tilt angle correction based on Hough line transform

Repair license plate defect

| Step | LP1 | LP2 | LP3 | LP4 | LP5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Image Segmentation | $A \times 145379$ | $\sqrt{11886320}$ |  | 491669 | T616.LF |
| Morphology |  |  |  |  | 7616.15 |
| Convex Hull |  |  |  |  | $15$ |
| LP mask |  |  |  |  |  |
| Canny |  |  |  |  |  |
| $\begin{gathered} \text { LP } \\ \text { positioning } \end{gathered}$ | $45379$ |  |  |  | 7618.LF |

Result \& Conclusion

cars: 0.92
unknown: 0.08
inference time: 745ms
A Vehicle detection (MobileNet v2)


A LP detection (YOLO v3)


A Character recognition (AlexNet)

| Step | Procedure | Result | Step | Procedure | Result |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Original |  | 9 | Binarization | AXA, 5379 |
| 2 | Grayscale |  | 10 | Canny |  |
| 3 | Hough Line |  | 11 | Convex Hull |  |
| 4 | Tilt Correction |  | 12 | LP mask |  |
| 5 | Canny | $415]^{\circ}$ | 13 | Canny |  |
| 6 | Rectangle Fitting | $152$ | 14 | LP <br> positioning |  |
| 7 | Bounding Box |  | 15 | Perspective Transformation | $\text { AXM. } 5379$ |
| 8 | GrabCut (Segmentation) |  | 16 | Character Recognition (AlexNet) | AXM 5379 |

A LP recognition algorithm

The above figures and tables show the algorithm and results of our design. Based on the results, we observe that the helps of image processing can simplify the complexity of the problem. The problem of license plate recognition can turn be turned into the license plate positioning problem and character recognition problem. At the same time, it can reduce the difficulty of training the model. For the edge inference detection of vehicle, the accuracy is about $70 \% \sim 90 \%$, and the inference time is about 750 ms (1.33 fps). Compaing with NVIDIA Jetson Nano (5~10w), the low-power ESP32-CAM (30mW~1.5W) is more efficient in power consumption. It is suitable for always-on scenarios.

