Chapter 1: An Introduction to Computer Science

Invitation to Computer Science, C++ Version, 6-th Edition
Objectives

In this chapter, you will learn about

- The definition of computer science
- Algorithms
- A brief history of computing
- Organization of the text
Introduction

- What is computer science?
 - Computer science is the study of computers?
 - Computer science is the study of how to write computer programs?
 - Computer science is the study of the uses and applications of computers and software?
Common Misconceptions about Computer Science

- **Computer science is the study of computers**
 - Incomplete – Theoretical work began (1920-1940) before computers
 - CS became an independent field of study late 1950’s, early 1960’s
 - Theoretical CS relies on formal models rather than “real” machines

- CS is no more about computers than astronomy is about telescopes. (see quote on p.3)
Common Misconceptions about Computer Science

- **Computer science is the study of how to write computer programs**
 - Programming is important, but it is just a tool for studying new ideas, representing information or testing the solution to a problem.
 - A Program is a **means to an end, not the end itself**.
 - Eg. Searching a list such as the NYC phone Directory
Common Misconceptions about Computer Science

Computer science is the study of the uses and applications of computers and software

- Examples of popular applications are word processors, databases, image software, presentation software, electronic email, Web browser, etc.
- Many people use software, but the computer scientist is responsible for specifying, designing, building and testing software packages and the systems on which they run.
The Definition of Computer Science

- Computer scientist designs and develops algorithms to solve problems

- Gibbs and Tucker definition of computer science
 - The study of algorithms, including
 - Their formal and mathematical properties
 - Their Hardware realizations
 - Their Linguistic realizations
 - Their Applications
The Definition of Computer Science (con't)

- Algorithm
 - Dictionary definition
 - A procedure for solving a mathematical problem in a finite number of steps that frequently involves repetition of an operation
 - A step-by-step method for accomplishing a task
 - Informal description
 - An ordered sequence of instructions that is guaranteed to solve a specific problem
The Definition of Computer Science (con't)

- Operations involved in designing algorithms
 - Formal and mathematical properties
 - Studying the behavior of algorithms to determine whether they are correct and efficient
 - Hardware realizations
 - Designing and building computer systems that are able to execute algorithms
The Definition of Computer Science (con't)

- **Linguistic realizations**
 - Designing programming languages and translating algorithms into these languages

- **Applications**
 - Identifying important problems and designing correct and efficient software packages to solve these problems
What an Algorithm Looks like?

An algorithm is a list that looks like

- **STEP 1**: Do something.
- **STEP 2**: Do something.
- **STEP 3**: Do something.
- ...
- ...
- ...
- **STEP N**: Stop. You are finished.
Algorithms

- We use algorithms all the time
 - Examples?
 - Following directions
 - Programming a DVD
 - Adding two numbers
 - Finding Greatest Common Divisor
Example of Algorithms

Algorithm for Programming Your DVR

Step 1 If the clock and calendar are not correctly set, then go to page 9 of the instruction manual and follow the instructions there before proceeding to step 2.

Step 2 Place a blank tape into the DVR disc slot.

Step 3 Repeat steps 4 through 7 for each program that you wish to record.

Step 4 Enter the channel number that you wish to record and press the button labeled CHAN.

Step 5 Enter the time that you wish recording to start and press the button labeled TIME-START.

Step 6 Enter the time that you wish recording to stop and press the button labeled TIME-FINISH. This completes the programming of one show.

Step 7 If you do not wish to record anything else, press the button labeled END-PROG.

Step 8 Turn off your DVR. Your DVR is now in TIMER mode, ready to record.
Example of Algorithms (con’t)

Algorithm for Adding Two m-Digit Numbers

Given: \(m \geq 1 \) and two positive numbers each containing \(m \) digits, \(a_{m-1} a_{m-2} \ldots a_0 \) and \(b_{m-1} b_{m-2} \ldots b_0 \)

Wanted: \(c_m c_{m-1} c_{m-2} \ldots c_0 \), where
\[
(c_m c_{m-1} c_{m-2} \ldots c_0) = (a_{m-1} a_{m-2} \ldots a_0) + (b_{m-1} b_{m-2} \ldots b_0)
\]

Algorithm:

Step 1 Set the value of \textit{carry} to 0.
Step 2 Set the value of \(i \) to 0.
Step 3 While the value of \(i \) is less than or equal to \(m - 1 \), repeat the instructions in steps 4 through 6.
Step 4 Add the two digits \(a_i \) and \(b_i \) to the current value of \textit{carry} to get \(c_i \).
Step 5 If \(c_i \geq 10 \), then reset \(c_i \) to \((c_i - 10)\) and reset the value of \textit{carry} to 1; otherwise, set the new value of \textit{carry} to 0.
Step 6 Add 1 to \(i \), effectively moving one column to the left.
Step 7 Set \(c_m \) to the value of \textit{carry}.
Step 8 Print out the final answer, \(c_m c_{m-1} c_{m-2} \ldots c_0 \).
Step 9 Stop.
The Formal Definition of an Algorithm

- Algorithm
 - A well-ordered collection of unambiguous and effectively computable operations that, when executed, produces a result and halts in a finite amount of time
The Formal Definition of an Algorithm (con’t)

- **Unambiguous operation**
 - An operation that can be understood and carried out directly by the computing agent without needing to be further simplified or explained
 - Also called a *primitive* operation
 - Examples of ambiguous statements
 - Go back and do it again (Do *what* again?)
 - Start over (From *where*?)
Ambiguous vs. Unambiguous

Step 1: Wet hair
Step 2: Lather
Step 3: Rinse
Step 4: Repeat

Ambiguous

Step 1: Wet hair
Step 2: Set WashCount = 0
Step 3: Repeat 4 to 6 until WashCount = 2
Step 4: Lather hair
Step 5: Rinse hair
Step 6: Add 1 to WashCount
Step 7: Stop

Unambiguous
High Level vs. Further Simplified

High Level
- Step 1: Make the crust
- Step 2: Make The cherry filling
- Step 3: Pour the filling into the crust
- Step 4: Bake at 350°F for 45 minutes

Further Simplified and
- Step 1: Make the crust
 - 1.1 Take one and on-third cups flour
 - Sift the flour
 - Mix the sifted flour with one-half cup butter and on-fourth cut water
 - Roll into two 9-inch pie crusts
- Step 2: Make The cherry filling
- ...

Invitation to Computer Science, C++ Version, 6E
The Formal Definition of an Algorithm (con't)

- **A primitive operation** (or a primitive) of the computing agent
 - Operation that is unambiguous for computing agent
 - Primitive operations of different individuals (or machines) vary
 - An algorithm must be composed entirely of primitives

- **Effectively computable**
 - Computational process exists that allows computing agent to complete that operation successfully
The Formal Definition of an Algorithm (con't)

- The result of the algorithm must be produced after the execution of a finite number of operations
 - Infinite loop
 - The algorithm has no provisions to terminate
 - A common error in the designing of algorithms
 Step1: Wet hair
 Step2: Lather
 Step3: Rinse
 Step4: Repeat 3-4
Categories of Algorithm Operations

All the operations used to construct algorithms belong to one of only three categories:

- Sequential Operations
- Conditional Operations
- Iterative Operations
Categories of Algorithm Operations

- **Sequential operations**
 - Carry out a single well-defined task; when that task is finished, the algorithm moves on to the next operation
 - Examples:
 - Add 1 cup of butter to the mixture in the bowl
 - Subtract the amount of the check from the current account balance
 - Set the value of x to 1
 - Set the value of y to $x^2 \sin(1/2)$
Categories of Algorithm Operations (con't)

- **Conditional operations**
 - Ask a question and then select the next operation to be executed on the basis of the answer to that question
 - **Examples**
 - If the mixture is too dry, then add one-half cup of water to the bowl
Categories of Algorithm Operations (con't)

- More examples about conditional operations:
 - If the amount of the check is less than or equal to the current account balance, then cash the check; otherwise, tell the person that the account is overdrawn
 - If x is not equal to 0, then set y equal to 1/x; otherwise, print an error message that says we cannot divide by 0
Categories of Algorithm Operations (con't)

- **Iterative operations**
 - Tell us to go back and repeat the execution of a previous block of instructions
 - **Examples**
 - Repeat the previous two operations until the mixture has thickened
 - While there are still more checks to be processed, do the following five steps
 - Repeat steps 1, 2, and 3 until the value of y is equal to 11
Algorithms

Why an algorithm is so important?

- If we can specify an algorithm to solve a problem, we can automate its solution by a computing agent.

Computing agent

- The machine, robot, person, or thing carrying out the steps of the algorithm.
- Does not need to understand the concepts or ideas underlying the solution.
The Importance of Algorithmic Problem Solving

- “Computer revolution” of the twentieth and twenty-first centuries
 - Has enabled us to implement algorithms that **mechanize and automate** the drudgery of repetitive mental tasks

Algorithmic solutions can be
- Encoded into some appropriate programming language
- Given to a computing agent to execute

The computing agent
- Would mechanically follow these instructions and successfully complete the task specified
- Would not have to understand
 - Creative processes that went into discovery of solution
 - Principles and concepts that underlie the problem
Can all problems be solved algorithmically?

NO!

- There are problems which have **no generalized solution** – unsolvable or intractable
- Some with an algorithm would take **so long to execute** that the algorithm is useless
- Some problems we **have not yet** discovered an algorithm for

- Kurt Godel (1930’s) - See Chapter 12
A Brief History of Computing
The Early Period: Up to 1940

- 3,000 years ago: Mathematics, logic, and numerical computation
 - Important contributions made by the Greeks, Egyptians, Babylonians, Indians, Chinese, and Persians

- 1614: Logarithms
 - Invented by John Napier to simplify difficult mathematical computations

- Around 1622: First slide rule created
The Early Period: Up to 1940 (con't)

- 1672: The Pascaline
 - Designed and built by Blaise Pascal
 - One of the first mechanical calculators
 - Could do addition and subtraction
The Early Period: Up to 1940 (con't)

- 1674: Leibnitz’s Wheel
 - Constructed by Gottfried Leibnitz
 - Mechanical calculator
 - Could do addition, subtraction, multiplication, and division

The Leibnitz’s Wheel
The Early Period: Up to 1940 (con't)

- 1801: The Jacquard loom
 - Developed by Joseph Jacquard
 - Automated loom
 - Used punched cards to create desired pattern

- 1823: The Difference Engine
 - Developed by Charles Babbage
 - Did addition, subtraction, multiplication, and division to 6 significant digits
 - Solved polynomial equations and other complex mathematical problems
Figure 1.5
Drawing of the Jacquard Loom
The Early Period: Up to 1940 (con't)

- 1830s: The Analytic Engine
 - Designed by Charles Babbage
 - More powerful and general-purpose computational machine
 - Components were functionally similar to the four major components of today’s computers
 - Mill (modern terminology: arithmetic/logic unit)
 - Store (modern terminology: memory)
 - Operator (modern terminology: processor)
 - Output (modern terminology: input/output)
Difference engine

http://www.youtube.com/watch?v=0anlyVGeWOI
The Early Period: Up to 1940 (con't)

- 1890: U.S. census carried out with programmable card processing machines
 - Built by Herman Hollerith
 - These machines could automatically read, tally, and sort data entered on punched cards
The Early Period: Up to 1940

- First Programmer
- Ada Augusta Byron, Countess of Lovelace
The Birth of Computers: 1940-1950

- Development of electronic, general-purpose computers
 - Did not begin until after 1940
 - Was fueled in large part by needs of World War II

- Early computers
 - Mark I
 - ENIAC
 - ABC system
 - Colossus
 - Z1
Figure 1.6
Photograph of the ENIAC Computer
Replacing a bad tube meant checking among ENIAC’s 19,000 possibilities.

Replacing a vacuum tube in the ENIAC
Programming the ENIAC
….and still programming
The Birth of Computers: 1940-1950 (con't)

- Stored program computer model
 - Proposed by John Von Neumann in 1946
 - Stored binary algorithm in the computer’s memory along with the data
 - Is known as the Von Neumann architecture
 - Modern computers remain, fundamentally, Von Neumann machines
- First stored program computers
 - EDVAC
 - EDSAC
The Modern Era: 1950 to the Present

- First generation of computing (1950-1959)
 - Vacuum tubes used to store data and programs
 - Each computer was multiple rooms in size
 - Computers were not very reliable
The Modern Era: 1950 to the Present (con't)

- Second generation of computing (1959-1965)
 - Transistors and magnetic cores replaced vacuum tubes
 - Dramatic reduction in size
 - Computer could fit into a single room
 - Increase in reliability of computers
 - Reduced cost of computers
 - High-level programming languages
 - The programmer occupation was born
The Modern Era: 1950 to the Present (con't)

- Third generation of computing (1965-1975)
 - Integrated circuits rather than individual electronic components were used
 - Further reduction in size and cost of computers
 - Computers became desk-sized
 - First minicomputer developed
 - Software industry formed
The Modern Era: 1950 to the Present (con't)

- Fourth generation of computing (1975-1985)
 - Reduced to the size of a typewriter
 - First microcomputer developed
 - Desktop and personal computers common
 - Appearance of
 - Computer networks
 - Electronic mail
 - User-friendly systems (graphical user interfaces)
 - Embedded systems
Figure 1.7
The Altair 8800, the World’s First Microcomputer
Beginnings of the Apple Computer

http://www.digibarn.com/history/06-11-4-VCF9-Apple30-panel.slides/index.html
The Modern Era: 1950 to the Present (con't)

- Fifth generation of computing (1985-?)
 - Recent developments
 - Massively parallel processors
 - Handheld devices and other types of personal digital assistants (PDAs)
 - High-resolution graphics
 - Powerful multimedia user interfaces incorporating sound, voice recognition, touch, photography, video, and television
The Modern Era: 1950 to the Present (con't)

- Recent developments (con't)
 - Integrated global telecommunications incorporating data, television, telephone, fax, the Internet, and the World Wide Web
 - Wireless data communications
 - Massive storage devices
 - Ubiquitous computing
<table>
<thead>
<tr>
<th>Generation</th>
<th>Approximate Dates</th>
<th>Major Advances</th>
</tr>
</thead>
</table>
| First | 1950–1957 | First commercial computers
 First symbolic programming languages
 Use of binary arithmetic, vacuum tubes for storage
 Punched card input/output |
| Second | 1957–1965 | Transistors and core memories
 First disks for mass storage
 Size reduction, increased reliability, lower costs
 First high-level programming languages
 First operating systems |
| Third | 1965–1975 | Integrated circuits
 Further reduction in size and cost, increased reliability
 First minicomputers
 Time-shared operating systems
 Appearance of the software industry
 First set of computing standards for compatibility between systems |

Figure 1.8
Some of the Major Advancements in Computing
| Fourth | 1975–1985 | Large-scale and very-large-scale integrated circuits
| | | Further reduction in size and cost, increased reliability
| | | First microcomputers
| | | Growth of new types of software and of the software industry
| | | Computer networks
| | | Graphical user interfaces |
| Fifth | 1985–? | Ultra-large-scale integrated circuits
| | | Supercomputers and parallel processors
| | | Laptops and handheld computers
| | | Wireless computing
| | | Massive external data storage devices
| | | Ubiquitous computing
| | | High-resolution graphics, visualization, virtual reality
| | | Worldwide networks
| | | Multimedia user interfaces |

Figure 1.8

Some of the Major Advancements in Computing
Organization of the Text

- This book is divided into six separate sections called levels
- Each level addresses one aspect of the definition of computer science
- Computer science/algorithms
Organization of the Text (con't)

- Level 1: The Algorithmic Foundations of Computer Science
 - Chapters 1, 2, 3

- Level 2: The Hardware World
 - Chapters 4, 5

- Level 3: The Virtual Machine
 - Chapters 6, 7
Organization of the Text (con't)

- Level 4: The Software World
 - Chapters 8, 9, 10, 11

- Level 5: Applications
 - Chapters 12, 13, 14

- Level 6: Social Issues
 - Chapter 15
Figure 1.9
Organization of the Text into a Six-Layer Hierarchy
Summary

- Computer science is the study of algorithms.
- An algorithm is a well-ordered collection of unambiguous and effectively computable operations that, when executed, produces a result and halts in a finite amount of time.
- If we can specify an algorithm to solve a problem, then we can automate its solution.