A New Communication Paradigm: Virtual Antennas for Distributed Broadband Communications via Cooperative Relaying

Kuang-Hao (Stanley) Liu
khliu@mail.ncku.edu.tw
http://myweb.ncku.edu.tw/~khliu

Dept. Electrical Engineering, NCKU

Given at EE Department, National Chung Hsing University, Taiwan
Oct. 16, 2009
Background

Envision of 4G
Background

Envision of 4G

- Very high speed → Gigabits
 3G: 2Mbps; 3.5G: 14.4Mbps
Background

<table>
<thead>
<tr>
<th>Envision of 4G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very high speed → Gigabits</td>
</tr>
<tr>
<td>3G: 2Mbps; 3.5G: 14.4Mbps</td>
</tr>
<tr>
<td>High mobility → 350 Km/hr</td>
</tr>
<tr>
<td>3G/3.5G: 120Km/hr</td>
</tr>
</tbody>
</table>
Background

Envision of 4G

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very high speed</td>
<td>Gigabits</td>
</tr>
<tr>
<td>3G: 2Mbps; 3.5G: 14.4Mbps</td>
<td></td>
</tr>
<tr>
<td>High mobility</td>
<td>350 Km/hr</td>
</tr>
<tr>
<td>3G/3.5G: 120Km/hr</td>
<td></td>
</tr>
<tr>
<td>Flat All-IP architecture</td>
<td></td>
</tr>
</tbody>
</table>
Background

Envision of 4G

- **Very high speed → Gigabits**
 - 3G: 2Mbps; 3.5G: 14.4Mbps

- **High mobility → 350 Km/hr**
 - 3G/3.5G: 120Km/hr

- **Flat All-IP architecture**
Background

Envision of 4G

- Very high speed → Gigabits
 3G: 2Mbps; 3.5G: 14.4Mbps

- High mobility → 350 Km/hr
 3G/3.5G: 120Km/hr

- Flat All-IP architecture

Fundamental challenge: signals transmitted over wireless attenuated in various forms
Signal attenuation

- Path loss
- Long term fading
- Short term fading
Signal attenuation

- Path loss
- Long term fading
- Short term fading

Pathloss and long term fading may be mitigated by power control
Signal attenuation

- Path loss
- Long term fading
- Short term fading

Short term fading can be mitigated by diversity techniques
Diversity

- Methods of combating the effects of fading by effectively receiving independent fading copies of the signal
Diversity

- Methods of combating the effects of fading by effectively receiving independent fading copies of the signal
- Spatial, temporal, and frequency
Diversity

- Methods of combating the effects of fading by effectively receiving independent fading copies of the signal
- Spatial, temporal, and frequency

Spatial Diversity
Diversity

- Methods of combating the effects of fading by effectively receiving independent fading copies of the signal
- Spatial, temporal, and frequency

Spatial Diversity

- Transmit diversity (MISO)
Diversity

- Methods of combating the effects of fading by effectively receiving independent fading copies of the signal
- Spatial, temporal, and frequency

Spatial Diversity

- Transmit diversity (MISO)
- Receive diversity (SIMO)
Diversity

- Methods of combating the effects of fading by effectively receiving independent fading copies of the signal
- Spatial, temporal, and frequency

Spatial Diversity

- Transmit diversity (MISO)
- Receive diversity (SIMO)
- Transmit and receive diversity (MIMO)
In spatial diversity techniques
In spatial diversity techniques

- Antennas should be separated by the distance of a few wavelengths
In spatial diversity techniques

- Antennas should be separated by the distance of a few wavelengths
- E.g., wavelength = 0.33 m for 900 MHz signal
In spatial diversity techniques

- Antennas should be separated by the distance of a few wavelengths
- E.g., wavelength $= 0.33$ m for 900 MHz signal
- Not feasible for mobile (handheld) devices
Virtual Antenna Array
Virtual Antenna Array
Forming a *Virtual* antenna array (VAA) by distributing antennas in the network [*Dohler’02*].
Forming a *Virtual* antenna array (VAA) by distributing antennas in the network [*Dohler’02*]

A good alternative to MIMO without the need of collocated antennas
Forming a *Virtual* antenna array (VAA) by distributing antennas in the network [Dohler’02]

A good alternative to MIMO without the need of collocated antennas

Another advantage is power saving; wireless signals attenuate exponentially fast as the distance increases
Two approaches to implement VAA
Implementation of VAA

Two approaches to implement VAA

- Connecting the VAA through coaxial cables or fibers
Implementation of VAA

Two approaches to implement VAA
- Connecting the VAA through coaxial cables or fibers
- Connecting the VAA wirelessly
Implementation of VAA

Two approaches to implement VAA

- Connecting the VAA through coaxial cables or fibers
- Connecting the VAA wirelessly

The second approach, known as cooperative relaying, seems more interesting and will be the focus of this talk.
Diversity Gain

Using cooperative relays is expected to increase the diversity gain: a metric to evaluate the increase in the error rate slope as a function of SNR.
Cooperative Relaying Communication Concept

Phase I: Broadcast
Cooperative Relaying Communication Concept

Phase I: Broadcast

Phase 2: Cooperation
Cooperative Relaying Communication Concept

Phase I: Broadcast
Phase 2: Cooperation

Figure from: J. N. Laneman et al. ’03
Consider the following dual-hop communication system with one relay.
Relaying Methods

Consider the following dual-hop communication system with one relay

Based on signal processing at relays
Relaying Methods

Consider the following dual-hop communication system with one relay

Based on signal processing at relays
- Analog Relaying: Amplify-and-Forward
Consider the following dual-hop communication system with one relay

\[y_R(t) = a_1 s(t) + n_1(t) \]
\[y_D(t) = a_2 G y_R(t) + n_2(t) \]
\[= a_2 G (a_1 s(t) + n_1(t)) + n_2(t) \]

Based on signal processing at relays

- Analog Relaying: Amplify-and-Forward
Consider the following dual-hop communication system with one relay

Based on signal processing at relays

- Analog Relaying: Amplify-and-Forward
- Digital Relaying: Decode-and-Forward
Relaying Methods

Consider the following dual-hop communication system with one relay

\[y_R(t) = a_1 s(t) + n_1(t) \]
\[y_D(t) = a_2 \hat{y}_R(t) + n_2(t) \]

Based on signal processing at relays
- Analog Relaying: Amplify-and-Forward
- Digital Relaying: Decode-and-Forward
Amplify-and-Forward

Relays simply apply a power gain to the analog waveform and forward
Amplify-and-Forward

Relays simply apply a power gain to the analog waveform and forward.
The power gain must be chosen carefully to not degrade the end-to-end performance.
Amplify-and-Forward

Relays simply apply a power gain to the analog waveform and forward. The power gain must be chosen carefully to not degrade the end-to-end performance.

- Choice 1- [Hasna et al. ’03]: \(G^2 = 1/a_1^2 \)
Amplify-and-Forward

Relays simply apply a power gain to the analog waveform and forward.
The power gain must be chosen carefully to not degrade the end-to-end performance.

- Choice 1- [Hasna et al. ’03]: $G^2 = 1/a_1^2$
 Resulting equivalent end-to-end SNR: $\gamma_{eq} = \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2}$
Amplify-and-Forward

Relays simply apply a power gain to the analog waveform and forward.
The power gain must be chosen carefully to not degrade the end-to-end performance.

- **Choice 1** - [Hasna et al. ’03]: \(G^2 = \frac{1}{a_1^2} \)
 Resulting equivalent end-to-end SNR: \(\gamma_{eq} = \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \)

- **Choice 2** - [Laneman et al. ’00]: \(G^2 = \frac{1}{(a_1^2 + N_0)} \)
Amplify-and-Forward

Relays simply apply a power gain to the analog waveform and forward. The power gain must be chosen carefully to not degrade the end-to-end performance.

- **Choice 1-** [Hasna et al. ’03]: \(G^2 = \frac{1}{a_1^2} \)
 Resulting equivalent end-to-end SNR: \(\gamma_{eq} = \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \)

- **Choice 2-** [Laneman et al. ’00]: \(G^2 = \frac{1}{(a_1^2 + N_0)} \)
 Limits the relay gain when first hop in deep fade.
Amplify-and-Forward

Relays simply apply a power gain to the analog waveform and forward.
The power gain must be chosen carefully to not degrade the end-to-end performance.

- Choice 1- [Hasna et al. ’03]: \(G^2 = \frac{1}{a_1^2} \)
 Resulting equivalent end-to-end SNR: \(\gamma_{eq} = \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \)

- Choice 2- [Laneman et al. ’00] \(G^2 = \frac{1}{(a_1^2 + N_0)} \)
 Limits the relay gain when first hop in deep fade
 Resulting equivalent end-to-end SNR: \(\gamma_{eq} = \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2 + 1} \)
Comparison of Two Relay Gains

Comparison of the Two Choices of Relay Gain Using Monte Carlo Simulation

Outage Probability P_{out} vs. Normalized SNR [dB]

- Relay Gain (Laneman)
- Relay Gain (Channel Inversion)
Diversity Gain due to A-F Collaboration

Effect of Collaborative Diversity on Average BER Performance

Average Bit Error Rate vs. Average SNR per bit for different values of L. The graph shows a clear trend of decreasing BER with increasing SNR, highlighting the effectiveness of collaborative diversity in improving the reliability of data transmission.
Decode-and-Forward

Relays first decode the received signal before forwarding
Decode-and-Forward

Relays first decode the received signal before forwarding. When the first hop is in deep fade, relays might forward erroneous information.
Decode-and-Forward

Relays first decode the received signal before forwarding. When the first hop is in deep fade, relays might forward erroneous information.

- Choice 1- Use error detection codes: extra processing overhead at relays
Decoding-and-Forward

Relays first decode the received signal before forwarding. When the first hop is in deep fade, relays might forward erroneous information.

- **Choice 1:** Use *error detection codes*: extra processing overhead at relays.
- **Choice 2:** Set a *detection threshold*: optimal threshold is not obvious.
Decoding-and-Forward

Relays first decode the received signal before forwarding. When the first hop is in deep fade, relays might forward erroneous information.

- **Choice 1**: Use error detection codes: extra processing overhead at relays
- **Choice 2**: Set a detection threshold: optimal threshold is not obvious

Comparing to analog relaying, digital relaying is easy to implement and benefits from coding gain.
The employment of relay-assisted cooperative communication in WiMAX has been approved by IEEE 802.16j SA in May 2009 (optional in the standard).
The employment of relay-assisted cooperative communication in WiMAX has been approved by IEEE 802.16j SA in May 2009 (optional in the standard).

- Cooperative source diversity mode: relays and multi-hop enabled BS (MR-BS) transmit identical signals simultaneously in time and frequency.
The employment of relay-assisted cooperative communication in WiMAX has been approved by IEEE 802.16j SA in May 2009 (optional in the standard).

- Cooperative **source** diversity mode: relays and multi-hop enabled BS (MR-BS) transmit identical signals simultaneously in time and frequency
- Cooperative **transmit** diversity mode: using space-time codes distributed across antennas at the cooperating relays or MR-BS
The employment of relay-assisted cooperative communication in WiMAX has been approved by IEEE 802.16j SA in May 2009 (optional in the standard).

- Cooperative source diversity mode: relays and multi-hop enabled BS (MR-BS) transmit identical signals simultaneously in time and frequency
- Cooperative transmit diversity mode: using space-time codes distributed across antennas at the cooperating relays or MR-BS
- Cooperative hybrid diversity mode: combination of the above two modes
The employment of relay-assisted cooperative communication in WiMAX has been approved by IEEE 802.16j SA in May 2009 (optional in the standard).

- Cooperative source diversity mode: relays and multi-hop enabled BS (MR-BS) transmit identical signals simultaneously in time and frequency
- Cooperative transmit diversity mode: using space-time codes distributed across antennas at the cooperating relays or MR-BS
- Cooperative hybrid diversity mode: combination of the above two modes

Currently under discussion in 3GPP LTE-Advanced.
Extension to multiple relays

The above discussion focused on single-relay case, where the relay is fixed and dedicated for help.
Extension to multiple relays

The above discussion focused on single-relay case, where the relay is fixed and dedicated for help.

Consider the following dual-hop communication system with n relay
Extension to multiple relays

The above discussion focused on single-relay case, where the relay is fixed and dedicated for help.

Consider the following dual-hop communication system with n relay \Rightarrow MISO channel.
Protocols to Cooperate

Broadcast (Phase 1) Cooperation (Phase 2)

Source t_1 t_2 \cdots t_p

Relay 1 T_1

Relay 2 T_2

\vdots

Relay n t_q

Broadcast (Phase 1) Cooperation (Phase 2)

Source t_1 t_2 \cdots t_p

Relay 1 T_1 T_2 \cdots t_q

Relay 2 T_1 T_2 \cdots t_q

\vdots

Relay n T_1 T_2 \cdots t_q
The cooperative protocols can be designed to explore different degree of freedoms, e.g., *time, frequency, and code*
Multiplexing Gain

With no fading, capacity of a single-user single antenna AWGN channel is approximately $\log(\text{SNR})$, for high SNR.
Multiplexing Gain

With no fading, capacity of a single-user single antenna AWGN channel is approximately $\log(SNR)$, for high SNR
For a coded system, the channel capacity at high SNR is

$$C(SNR) = rSNR + c$$

where r is a scaling factor, c is a constant
Multiplexing Gain

With no fading, capacity of a single-user single antenna AWGN channel is approximately $\log(\text{SNR})$, for high SNR.

For a coded system, the channel capacity at high SNR is

$$C(\text{SNR}) = r\text{SNR} + c$$

where r is a scaling factor, c is a constant.

For such a capacity, the data rate approaches to a constant for high SNR:

$$\lim_{\text{SNR} \to \infty} \frac{R(\text{SNR})}{\log(\text{SNR})} = r$$
Multiplexing Gain

With no fading, capacity of a single-user single antenna AWGN channel is approximately \(\log(\text{SNR}) \), for high SNR. For a coded system, the channel capacity at high SNR is

\[
C(\text{SNR}) = r \text{SNR} + c
\]

where \(r \) is a scaling factor, \(c \) is a constant. For such a capacity, the data rate approaches to a constant for high SNR

\[
\lim_{\text{SNR} \to \infty} \frac{R(\text{SNR})}{\log(\text{SNR})} = r
\]

The multiplexing gain \(r \) is the rate increase over the single antenna AWGN channel capacity.
Recall that cooperative relaying increases diversity gain d, defined as

$$
\lim_{\text{SNR} \to \infty} \frac{P_e(\text{SNR})}{\log(\text{SNR})} = -d
$$
Recall that cooperative relaying increases diversity gain d, defined as

$$\lim_{\text{SNR} \to \infty} \frac{P_e(\text{SNR})}{\log(\text{SNR})} = -d$$

Given n transmission paths available, we can either maximize the transmission rate by sending independent information or maximize the reliability by sending identical information over all paths ⇒ Diversity-Multiplexing Tradeoff (DMF)
Recall that cooperative relaying increases diversity gain d, defined as

$$\lim_{\text{SNR} \to \infty} \frac{P_e(\text{SNR})}{\log(\text{SNR})} = -d$$

Given n transmission paths available, we can either maximize the transmission rate by sending independent information or maximize the reliability by sending identical information over all paths ⇒ Diversity-Multiplexing Tradeoff (DMF)

The MR system can be modeled as a MISO channel with the DM gain bounded by

$$d(r) \leq (n + 1)(1 - r)$$
DMT for $n = 2$
Issues in MR case

- **Who** is Mr. helper? (relay selection)
 - SNR: avg., instant., harmonic mean [Bletsas’05]
 - Location-dependent [Zorzi’03]
 - Decision: destination, relay [Onat’08]
Issues in MR case

- **Who** is Mr. helper? (relay selection)
 - SNR: avg., instant., harmonic mean [Bletsas’05]
 - Location-dependent [Zorzi’03]
 - Decision: destination, relay [Onat’08]

- **When** we need Mr. helper?
 - Deep fade: NACK is issued [Zhao’05]
 - Shadowing: burst errors occur
 - Save energy: sensor networks
Issues in MR case

- **Who** is Mr. helper? (relay selection)
 - SNR: avg., instant., harmonic mean [Bletsas’05]
 - Location-dependent [Zorzi’03]
 - Decision: destination, relay [Onat’08]

- **When** we need Mr. helper?
 - Deep fade: NACK is issued [Zhao’05]
 - Shadowing: burst errors occur
 - Save energy: sensor networks

- **How** Mr. helper can help?
 - Power allocation to maximize received SNR [Li’07]
 - Receiver design for async. coop. [Wei’06]
Relaying Strategy

If relays always help (fixed relaying), the performance is poor in DF
Relaying Strategy

If relays always help (fixed relaying), the performance is poor in DF

Example: Single relay with very strong S-R channel but very weak R-D channel (Similar result can be expected for a week S-R channel)
Strategy I: only relays receiving correctly forward [Laneman’03]
Selection relaying

Strategy I: only relays receiving correctly forward \[\text{[Laneman’03]}\]

- Reduce to conventional MIMO with \(|D|\) transmit antennas, where \(D\) is the decoding set
Strategy I: only relays receiving correctly forward \cite{Laneman03}

- Reduce to conventional MIMO with $|\mathcal{D}|$ transmit antennas, where \mathcal{D} is the decoding set

- Need relays to perform error detection even they cannot forward
Selection relaying

Strategy I: only relays receiving correctly forward \([\text{Laneman’03}]\)

- Reduce to conventional MIMO with \(|D|\) transmit antennas, where \(D\) is the decoding set
- Need relays to perform error detection even they cannot forward

Strategy II: Check branch quality by comparing it with a threshold
Selection relaying

Strategy I: only relays receiving correctly forward \([\text{Laneman’03}]\)

- Reduce to conventional MIMO with \(|D|\) transmit antennas, where \(D\) is the decoding set
- Need relays to perform error detection even they cannot forward

Strategy II: Check branch quality by comparing it with a threshold

- Similar to “selection combining” in MIMO
Selection relaying

Strategy I: only relays receiving correctly forward \([\text{Laneman'03}]\)
- Reduce to conventional MIMO with \(|\mathcal{D}|\) transmit antennas, where \(\mathcal{D}\) is the decoding set
- Need relays to perform error detection even they cannot forward

Strategy II: Check branch quality by comparing it with a threshold
- Similar to “selection combining” in MIMO
- Fixed threshold is simple but not optimal; need to adaptively determine the threshold
Given a decoding set \mathcal{D}, use $|\mathcal{D}|$ orthogonal channels for diversity combining
Selection Strategy I

Given a decoding set \mathcal{D}, use $|\mathcal{D}|$ orthogonal channels for diversity combining \Rightarrow Need special channel codes to avoid multiplexing loss
Given a decoding set \mathcal{D}, use $|\mathcal{D}|$ orthogonal channels for diversity combining \Rightarrow Need special channel codes to avoid multiplexing loss

Another way around: select one best relay \Rightarrow Opportunistic Relaying [Bletsas’06]
Selection Strategy I

Given a decoding set \mathcal{D}, use $|\mathcal{D}|$ orthogonal channels for diversity combining \Rightarrow Need special channel codes to avoid multiplexing loss

Another way around: select one best relay \Rightarrow Opportunistic Relaying [Bletsas’06]
Selection Strategy I

Given a decoding set \mathcal{D}, use $|\mathcal{D}|$ orthogonal channels for diversity combining ⇒ Need special channel codes to avoid multiplexing loss

Another way around: select one best relay ⇒ Opportunistic Relaying [Bletsas’06]
Selection Strategy 1

Given a decoding set \mathcal{D}, use $|\mathcal{D}|$ orthogonal channels for diversity combining \Rightarrow Need special channel codes to avoid multiplexing loss

Another way around: select one best relay \Rightarrow Opportunistic Relaying [Bletsas’06]

- Select $R^* = \arg \max_{r \in \mathcal{D}} \min\{|a_{s,r}|^2, |a_{r,d}|^2\}$
Selection Strategy I

Given a decoding set \mathcal{D}, use $|\mathcal{D}|$ orthogonal channels for diversity combining \Rightarrow Need special channel codes to avoid multiplexing loss

Another way around: select one best relay \Rightarrow Opportunistic Relaying $[Bletsas'06]$

- Select $R^* = \arg \max_{r \in \mathcal{D}} \min\{|a_{s,r}|^2, |a_{r,d}|^2\}$
DMT Comparison

- Ideal
- Opportunistic Relaying
- Space-time coding
- Repetition coding
- Non-cooperative
Delay in OR

![Graph showing average delay (ms) vs. ASNR (dB) for different numbers of relays (One relay, Two relays, Three relays, Four relays, Five relays).]
Delay in OR

![Graph showing delay variance (ms) vs. ASNR (dB) for one relay, two relays, three relays, four relays, and five relays.](image-url)
Selection Strategy II

For low-power devices, a simple comparator reduces selection complexity
Selection Strategy II

For low-power devices, a simple comparator reduces selection complexity.
Selection Strategy II

For low-power devices, a simple comparator reduces selection complexity

Choices of threshold:
For low-power devices, a simple comparator reduces selection complexity.

Choices of threshold:

- $\gamma_{sr} \geq \gamma_{sd}$: S-R channel is the bottleneck, given that relays locate in the middle of S-D; diversity limited to 2
Selection Strategy II

For low-power devices, a simple comparator reduces selection complexity.

Choices of threshold:

- $\gamma_{sr} \geq \gamma_{sd}$: S-R channel is the bottleneck, given that relays locate in the middle of S-D; diversity limited to 2.
- $\gamma_{sr} \geq \max\{\max\{\gamma_{sr}, \gamma_{rd}\}, \gamma_{sd}\}$: full diversity, but need global information.
For low-power devices, a simple comparator reduces selection complexity.

Choices of threshold:

- $\gamma_{sr} \geq \gamma_{sd}$: S-R channel is the bottleneck, given that relays locate in the middle of S-D; diversity limited to 2.

- $\gamma_{sr} \geq \max\{\max\{\gamma_{sr}, \gamma_{rd}\}, \gamma_{sd}\}$: full diversity, but need global information.

- Selection that minimizes e2e BER: clear benefit from exploring γ_{sd}, but marginal from γ_{rd} [Onat’08].
Selection Strategy II

For low-power devices, a simple comparator reduces selection complexity

Choices of threshold:

- $\gamma_{sr} \geq \gamma_{sd}$: S-R channel is the bottleneck, given that relays locate in the middle of S-D; diversity limited to 2
- $\gamma_{sr} \geq \max\{\max\{\gamma_{sr}, \gamma_{rd}\}, \gamma_{sd}\}$: full diversity, but need global information
- Selection that minimizes e2e BER: clear benefit from exploring γ_{sd}, but marginal from γ_{rd} [Onat’08]
- Above results do not consider diversity combining: conventional MRC combiner fails to obtain full diversity in multi-relay case
Further Reading

A. Nosratinia et al.
Cooperative Communication in Wireless Networks.

F. A. Onat et al.
Threshold Selection for SNR-based Selective Digital Relaying in Cooperative Wireless Networks.

S. W. Peters et al.
The Future of WiMAX: Multihop Relaying with IEEE 802.16j.
The END. Thank you!

Questions?